I Irreducible polynomials and prime elements

darksidemath
Messages
2
Reaction score
0
TL;DR Summary
How can I show that p is a prime element of Z[√3]?
let p∈Z a prime how can I show that p is a prime element of Z[√3] if and only if the polynomial x^2−3 is irreducible in Fp[x]? ideas or everything is well accepted :)
 
Physics news on Phys.org
If ##p\in R## is prime, then ##R/(p)## is an integral domain.

If ##x^2-3\in \mathbb{Z}_p[x]## is irreducible, then ##\mathbb{Z}_p[x]/(x^2-3)\cong \mathbb{Z}_p[\sqrt{3}]\cong \mathbb{Z}[\sqrt{3}]/(p)## is an integral domain.
 
  • Like
Likes darksidemath
fresh_42 said:
If ##p\in R## is prime, then ##R/(p)## is an integral domain.

If ##x^2-3\in \mathbb{Z}_p[x]## is irreducible, then ##\mathbb{Z}_p[x]/(x^2-3)\cong \mathbb{Z}_p[\sqrt{3}]\cong \mathbb{Z}[\sqrt{3}]/(p)## is an integral domain.
I thought the quotient by the ideal generated by an irreducible is a field, not just an integral domain.
 
It's a field if the ideal is maximal. There are no problems in principal ideal domains, but the general case is more complicated.
 
Aren't ideals generated by irreducible polynomials maximal?
 
WWGD said:
Aren't ideals generated by irreducible polynomials maximal?
I'm not sure and have been too lazy to think about it. E.g. we could have a situation ##(p) \subsetneq (p,q) \subsetneq R.##
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top