Irreversible isothermal Process Work External pressure not provided

AI Thread Summary
The discussion centers on the challenges of calculating work in an irreversible isothermal process without provided external pressure. The formula for work, W = -P_ext(ΔV), is highlighted, but the absence of P_ext complicates the calculations. Participants express confusion over how external pressures of 2 bar and 1 bar are derived and question the validity of changing P_ext in irreversible processes. The conversation also touches on the importance of sketching a PV diagram to visualize the isothermal behavior of an ideal gas. Overall, the participants seek clarity on the relationship between external pressure and work in this thermodynamic context.
Aurelius120
Messages
269
Reaction score
24
Homework Statement
An ideal gas is irreversibly isothermally expanded from ##(8bar ,4L)##to##(2bar,16L)##to##(1bar,32L) ##Find heat.
Relevant Equations
NA
Screenshot_20231231_031131_Chrome.jpg

It is clear that the process is isothermal else it is not possible to find heat absorbed.
$$W=-P_{ext}(\Delta V)$$

However ##P_{ext}## is not given. How do I proceed?
I tried taking ##W=-(P_2V_2-P_1V_1+P_3V_3-P_2V_2)=\Delta(PV)## but it is wrong for obvious reasons.
 
Physics news on Phys.org
The one solution I found uses
##W_1=-(2)(16-4)## and ##W_2=-(1)(32-16)##
##W=(W_1+W_2) bar.Litre=-4000J##
And ##Q=4000J##

How external pressure becomes ##2\ bar## and ##1\ bar## is beyond me. It also seems wrong that ##P_{ext}## should change in an irreversible process? That is like the only thing that is good about irreversible calculations.
 
Sketch a PV diagram of the process. Do you know what an isotherm looks like for an ideal gas?
 
Mister T said:
Sketch a PV diagram of the process. Do you know what an isotherm looks like for an ideal gas?
images.jpeg

Something like this correct?
 
Looks like you've found the way!
Aurelius120 said:
How external pressure becomes ##2\ bar## and ##1\ bar## is beyond me.
A slow compression expansion.

Aurelius120 said:
It also seems wrong that ##P_{ext}## should change in an irreversible process?
A dramatic example would be an explosion.
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top