MHB Is $\ell^\infty$ a Compact Metric Space?

  • Thread starter Thread starter ozkan12
  • Start date Start date
  • Tags Tags
    Sequence Space
ozkan12
Messages
145
Reaction score
0
Let $X={\ell}^{\infty}:=\left\{u\in{\ell}^{2}\left(R\right):\left| {u}_{k} \right|\le\frac{1}{k}\right\}$ and $T:{\ell}^{\infty}\to{\ell}^{\infty}$, defined by $T{u}_{k}=\frac{k}{k+1}{u}_{k}.$. Then

1) ${\ell}^{\infty}$ is a compact metric space,

2) $T$ is not a contraction,

3) $T$ is not a contractive,

4) Fix(T)=0, the null sequence,

5) The Picard İteration converges (uniformly) to the null sequence, i.e.,

${T}^{n}{u}_{k}^{(0)}=({\frac{k}{k+1}})^n {u}^\left(0\right)_{k}\to 0$

for any ${u}^\left(0\right)_{k}\in {\ell}^{\infty}$

Please prove 1, 2, 4 and 5...And please can you give definition of null sequence ? Thank you for your attention...Best wishes :)
 
Physics news on Phys.org
1) ${\ell}^{\infty}$ is a compact metric space,Proof: Let $\left\{ {u^n} \right\}_{n=1}^{\infty}$ be a sequence in ${\ell}^{\infty}$, then for each $u^n$, there exists a natural number $N_n$ such that $\left| {u^n_k} \right|\le\frac{1}{N_n}$ for all $k\ge N_n$. Thus,$||u^n-u^m||_2=\sqrt{\sum_{k=1}^{\infty}\left| {u^n_k-u^m_k} \right|^2}\le\sqrt{\sum_{k=N_n}^{\infty}\left| {u^n_k-u^m_k} \right|^2}\le\sqrt{\sum_{k=N_n}^{\infty}\left(\frac{1}{N_n}+\frac{1}{N_m}\right)^2}\le\sqrt{\sum_{k=N_n}^{\infty}\frac{2}{N_n N_m}}$Thus, the sequence $\left\{ {u^n} \right\}_{n=1}^{\infty}$ is Cauchy and hence converges since ${\ell}^{\infty}$ is complete. Therefore, ${\ell}^{\infty}$ is a compact metric space. 2) $T$ is not a contraction,Proof: Let $u^1,u^2\in{\ell}^{\infty}$ be two arbitrary elements. Then,$||T(u^1)-T(u^2)||_2=\sqrt{\sum_{k=1}^{\infty}\left| \frac{k}{k+1}{u^1_k}-\frac{k}{k+1}{u^2_k} \right|^2}=\sqrt{\sum_{k=1}^{\infty}\frac{k^2}{(k+1)^2
 
Back
Top