I Is energy always conserved in a co-rotating frame?

  • I
  • Thread starter Thread starter phantomvommand
  • Start date Start date
  • Tags Tags
    Energy Frame
AI Thread Summary
Energy conservation in a co-rotating or accelerating frame depends on the specifics of the frame's rotation and acceleration. To assess energy conservation, one must calculate the Lagrangian in terms of the generalized coordinates of the non-inertial frame. If the Lagrangian is not explicitly time-dependent, the associated Hamiltonian is conserved, which can be interpreted as the system's energy. In uniformly rotating frames, energy conservation can be expressed through a specific equation involving conservative forces. Overall, the ability to determine energy integrals hinges on the time dependence of the Lagrangian.
phantomvommand
Messages
287
Reaction score
39
Is energy always conserved in a co-rotating/accelerating frame?
 
Physics news on Phys.org
This is a bit too unspecific. How is your frame rotating? The way to check "energy conservation" is to calculate the Lagrangian of the system in terms of the generalized coordinates parametrizing the in this case non-inertial frame. If the Lagrangian is not explicitly time-dependent then the associated Hamiltonian is conserved and you could with some right of analogy call the Hamiltonian the energy of the system.
 
  • Informative
  • Like
Likes Dale and phantomvommand
As @vanhees71 said, there is insufficient detail to answer the question. You would have to describe accurately the rotation/acceleration in question. You could do that either with a coordinate transform between an inertial frame and yours, or with the metric or Lagrangian written directly in your frame's coordinates.
 
As I think I wrote in one of your previous threads, there is a simple form of energy conservation that applies to uniformly rotating, non-translationally-accelerating frames, viz: ##\dfrac{d}{dt} \left( T - \frac{1}{2}I \Omega^2 \right) - \displaystyle{\sum_a} \mathbf{F}_a \cdot \mathbf{v}_a = 0##. If all of the ##\mathbf{F}_a## are conservative then ##\displaystyle{\sum_a} \mathbf{F}_a \cdot \mathbf{v}_a## is a total time derivative and you have a conserved energy.

For other systems, whether or not you can find energy integrals depends on whether there is time dependence in the lagrangian i.e. write ##H = \dot{q}^i \dfrac{\partial L}{\partial \dot{q}^i} - L## then if ##\partial L/\partial t=0## you have$$\dfrac{dH}{dt} = \dot{q}^i \dfrac{d}{dt} \dfrac{\partial L}{\partial \dot{q}^i} + \dfrac{\partial L}{\partial \dot{q}^i} \ddot{q}^i - \dfrac{\partial L}{\partial q^i} \dot{q}^i - \dfrac{\partial L}{\partial \dot{q}^i} \ddot{q}^i$$which equals zero.
 
  • Like
Likes phantomvommand and vanhees71
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Hello! Let's say I have a cavity resonant at 10 GHz with a Q factor of 1000. Given the Lorentzian shape of the cavity, I can also drive the cavity at, say 100 MHz. Of course the response will be very very weak, but non-zero given that the Loretzian shape never really reaches zero. I am trying to understand how are the magnetic and electric field distributions of the field at 100 MHz relative to the ones at 10 GHz? In particular, if inside the cavity I have some structure, such as 2 plates...
Back
Top