MHB Is Every Group of Order 25 Cyclic?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Cyclic
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Let G be a group of order 25.
a, Prove that G is cyclic or $g5=e$ for all $g 2 G$.
Generalize to any group of order $p2$ where p is prime.
Let $g\in G$. If $g=e$, then clearly $g^5=e$.
So $g^6=e$. Then $|g|$ divides $25$, i.e., $|g| = 1,5,\textit{ or } 25$.
But $|g|\ne1$ since we assumed $g\ne e$, and $|g|^6=25$
otherwise, G would be cyclic. So $|g|=5, \textit{i.e.,} g^5 = e$.

ok so far anyway
my AA hw
 
Physics news on Phys.org
If $G$ contains an element of order $25$, then $G$ is cyclic. Otherwise, each non-identity element has order $5$ (by Lagrange's theorem). If $g\in G$ has order $5$, then $g^5 = e$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 26 ·
Replies
26
Views
689
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
4K