Is f Injective? Understanding the Composition of Functions

Click For Summary

Homework Help Overview

The discussion revolves around the properties of functions, specifically focusing on injective (one-to-one) and surjective (onto) functions within the context of finite sets. Participants are examining the implications of these properties in relation to the composition of functions.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the definition of injective functions and their implications, questioning the relationship between injectivity and surjectivity in finite sets. There is a focus on the correct interpretation of definitions and the logical implications of injectivity.

Discussion Status

The discussion is active, with participants providing clarifications and corrections regarding the definitions of injective functions. Some participants are attempting to reconcile their understanding of the definitions with the requirements of the problem, while others are emphasizing the importance of the finiteness of the sets involved.

Contextual Notes

Participants are working under the constraints of a homework assignment, which requires them to demonstrate properties of functions without providing complete solutions. The discussion reflects a mix of interpretations and attempts to clarify foundational concepts.

UOAMCBURGER
Messages
31
Reaction score
1

Homework Statement


Let A, B, C be finite sets such that A and B have the same number of elements, that is, |A| = |B|. Let f : A → B and g : B → C be functions.
(a) Suppose f is one-to-one. Show that f is onto.
(b) Suppose g ◦ f is one-to-one. Show that g is one-to-one.

Homework Equations

The Attempt at a Solution


We can let n = |A| = |B|
Since f is injective, we know that for all b ∈ B there exists at most ONE a ∈ A, such that f(a)=b right? that is, given x,y ∈ A f(x) != f(y) => x != y right? I can just see this from the definition, not sure how useful it is or where to go from here.
 
Last edited by a moderator:
Physics news on Phys.org
UOAMCBURGER said:

Homework Statement


Let A, B, C be finite sets such that A and B have the same number of elements, that is, |A| = |B|. Let f : A → B and g : B → C be functions.
(a) Suppose f is one-to-one. Show that f is onto.
(b) Suppose g ◦ f is one-to-one. Show that g is one-to-one.

Homework Equations

The Attempt at a Solution


We can let n = |A| = |B|
Since f is injective, we know that for all b ∈ B there exists at most ONE a ∈ A, such that f(a)=b right?
Yes.
... that is, given x,y ∈ A f(x) != f(y) => x != y right?
No. It means ##x\neq y \Rightarrow f(x) \neq f(y)## or ##f(x)=f(y) \Rightarrow x=y ##
... I can just see this from the definition, not sure how useful it is or where to go from here.
You have to use the finiteness of your sets. Injective means that all elements of ##A## are sent to different elements in ##B##. Now you have to show, that you get all of them.
 
Last edited by a moderator:
fresh_42 said:
Yes.No. It means ##x\neq y \Rightarrow f(x) \neq f(y)## or ##f(x)=f(y) \Rightarrow x=y ##
You have to use the finiteness of your sets. Injective means that all elements of ##A## are sent to different elements in ##B##. Now you have to show, that you get all of them.
I think my definition was correct, I meant given two elements in the domain (hence x,y ∈ A) then f(x) != f(y) (meaning that no two elements in A can map to the same element in the codomain, B) .. the definition of injective functions. the x !=y just means that the two elements in the domain can't be equal, otherwise it is possible to have f(x) = f(y). sorry if i wasnt clear about that.
 
UOAMCBURGER said:
I think my definition was correct,
No, it was not.
... I meant given two elements in the domain (hence x,y ∈ A)...
They are only different if you add ##x\neq y##
then f(x) != f(y) (meaning that no two elements in A can map to the same element in the codomain, B)
Yes, but that is not what you wrote. No two elements map onto the same element means: If two elements (##x, y##) happen to map to the same element (##f(x)=f(y)##), then they are equal (##x=y##):
$$
f \text{ is injective } \Longleftrightarrow (f(x)=f(y) \Longrightarrow x=y) \Longleftrightarrow (x \neq y \Longrightarrow f(x)\neq f(y))
$$
However, you wrote
UOAMCBURGER said:
that is, given x,y ∈ A f(x) != f(y) => x != y right?
which is the wrong direction and means that ##f## is well-defined: Different image points cannot result from one origin.
.. the definition of injective functions. the x !=y just means that the two elements in the domain can't be equal, otherwise it is possible to have f(x) = f(y). sorry if i wasnt clear about that.

I like the following mnemonic: Put your arms in front of you and let the hands be ##f##. Now make them touch at the wrist. This is not allowed for any function to be well-defined. Let them touch at the finger tips instead, then this is not allowed for injectivity.
 
Last edited:

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K