- #1
oliverkahn
- 27
- 2
I have two volumes ##V## and ##V'## in space such that:
1. ##∄## point ##P## ##\ni## ##[P \in V ∧ P\in V']##
2. ##V## is filled with electric charge ##q##
3. ##\rho = \dfrac{dq}{dV}## varies continuously in ##V##
4. ##V'## is filled with electric charge ##q'##
5. ##\rho' = \dfrac{dq'}{dV'}## varies continuously in ##V'##
Let ##r## be the distance between a point ##P_1 \in V## and a point ##P_2 \in V'##
In electrostatics, we use the implication:
##\displaystyle \dfrac{d^2\vec{F}}{dq\ dq'}=k\dfrac{\hat{r}}{r^2} \implies \vec{F}=k\int_q \int_{q'}\dfrac{\hat{r}}{r^2} dq'\ dq##
Does this implication has any mathematically rigor?
NOTE: I know:
##G(x)## is differentiable on interval ##[a,b]##
##\land## ##g(x)## is Riemann integrable function in interval ##[a,b]##
##\land## ##\dfrac{d\ G(x)}{dx} = g(x)## in interval ##(a,b)##
##\implies \displaystyle G(b)-G(a) = \int^b_a g(x) dx##
But I don't see why this works for integral over a volume, integral over a surface, etc...
1. ##∄## point ##P## ##\ni## ##[P \in V ∧ P\in V']##
2. ##V## is filled with electric charge ##q##
3. ##\rho = \dfrac{dq}{dV}## varies continuously in ##V##
4. ##V'## is filled with electric charge ##q'##
5. ##\rho' = \dfrac{dq'}{dV'}## varies continuously in ##V'##
Let ##r## be the distance between a point ##P_1 \in V## and a point ##P_2 \in V'##
In electrostatics, we use the implication:
##\displaystyle \dfrac{d^2\vec{F}}{dq\ dq'}=k\dfrac{\hat{r}}{r^2} \implies \vec{F}=k\int_q \int_{q'}\dfrac{\hat{r}}{r^2} dq'\ dq##
Does this implication has any mathematically rigor?
NOTE: I know:
##G(x)## is differentiable on interval ##[a,b]##
##\land## ##g(x)## is Riemann integrable function in interval ##[a,b]##
##\land## ##\dfrac{d\ G(x)}{dx} = g(x)## in interval ##(a,b)##
##\implies \displaystyle G(b)-G(a) = \int^b_a g(x) dx##
But I don't see why this works for integral over a volume, integral over a surface, etc...