Is it really circular to prove the sinx/x limit with L'Hopital?

Click For Summary
SUMMARY

The limit \lim_{x \to 0} \frac{ \sin x}{x} is often considered circular when using L'Hopital's rule due to the necessity of differentiating sine, which relies on this limit itself. Alternative proofs, such as geometric derivations and the squeeze theorem, provide valid non-circular approaches. Defining sine through power series or as a solution to an eigenvalue problem can also circumvent circularity. Ultimately, the geometric proof based on area comparisons in the unit circle is the simplest and most effective method for students.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with L'Hopital's rule
  • Basic knowledge of geometric proofs in trigonometry
  • Concept of the squeeze theorem
NEXT STEPS
  • Study geometric proofs of limits, specifically the area comparison method for \lim_{x \to 0} \frac{ \sin x}{x}
  • Learn about the squeeze theorem and its applications in calculus
  • Explore power series definitions of trigonometric functions
  • Investigate the implications of defining sine through eigenvalue problems
USEFUL FOR

Students of calculus, mathematics educators, and anyone interested in understanding the nuances of trigonometric limits and their proofs.

FeDeX_LaTeX
Science Advisor
Messages
436
Reaction score
13
Hello,

This limit

\lim_{x \to 0} \frac{ \sin x}{x}

is often cited as being an example where L'Hopital's rule cannot be used, since to use it you'd need to differentiate sine; but the derivative of sine, using the limit definition of a derivative, requires that you use the sinx/x limit (and the 1 - cosx / x limit) as part of the proof. So, we'd end up with a circular proof here, and thus we'd have to use the squeeze theorem as the alternative. But what struck me is if that is really the only proof that cosine is the derivative of sine? Aren't there others?

Apologies if this topic has been done to death.
 
Physics news on Phys.org
Everything depends on your definition of sine and cosine. If you define it as an integral or as a series, then you don't need to know the sin(x)/x limit.
 
First L'Hopital would not be needed as it is stronger than needed. That limit is sin'(0). As micromass said just define sine so that you can find sin'(0) and there is no problem. I just include sin'(0)=1 in the definition, problem solved. Any definition of sine will lead us to the fact that sin'(0) needs to exist and not be zero. We prefer sin'(0)=1 for simplicity though we often hide this condition as
sin(x)~x (x small)
sin'(x)=cos(x)
4Arcsin(sqrt(2)/2)=pi
but all these are equivalent to sin'(0)=1.
 
I don't know why high school students keep trying to use L'Hopital, these kinds of limits are really simple, my tutor taught me a method and it works every time (at least at high school level).
For example; \lim_{x\rightarrow 0}\frac{sin3x}{5x}=\lim_{x\rightarrow 0}\frac{sin3x}{3x}\times \frac{3}{5}=\frac{3}{5}
or something harder like; \lim_{x\rightarrow 0}\frac{sinx}{x(1+cosx)}=\lim_{x\rightarrow 0}\frac{2sin\frac{x}{2}cos\frac{x}{2}}{2xcos^{2}(x/2)}=\lim_{x\rightarrow 0}\frac{tan\frac{x}{2}}{\frac{x}{2}}\times \frac{1}{2}=\frac{1}{2}
 
FeDeX_LaTeX said:
Hello,

This limit

\lim_{x \to 0} \frac{ \sin x}{x}

is often cited as being an example where L'Hopital's rule cannot be used, since to use it you'd need to differentiate sine; but the derivative of sine, using the limit definition of a derivative, requires that you use the sinx/x limit (and the 1 - cosx / x limit) as part of the proof. So, we'd end up with a circular proof here, and thus we'd have to use the squeeze theorem as the alternative. But what struck me is if that is really the only proof that cosine is the derivative of sine? Aren't there others?

Apologies if this topic has been done to death.

l'hospital's Rule works here. Notice though that if you are trying to compute the derivative of the sine at zero from scratch then you can not use L'Hopital's Rule since you then assume that you already know the derivative.

I would try a geometric proof of this limit if you want to do it from scratch.
 
You meet the limit of sin(x)/x very early on in your studies.
It is perfectly possible to define sin(x) in such a way that application of L'Hopital won't become circular, but usually it will be, since, for example, regarding sin(x) as defined as the solution of an eigenvalue problem won't be the definition an early calculus student is equipped with.
Neither will an infinite series definition be the usual case.
----
Thus, a GEOMETRIC derivation of the limit will typically be the one non-circular proof left to the fledgling student.
----------------------
The simplest of those, in my view, is by a squeeze theorem application based on area comparisons on the unit circle, utilizing the radian measurement of angles.

An inscribed right-angled triangle has sides cos(x), sin(x), and 1, giving area cos(x)sin(x)/2.
The circular sector has area x/2
And the right-angled triangle just circumscribing that has sides 1, tan(x), 1/sec(x), with area tan(x)/2.
-----------------------------------
the limit of sin(x)/x follows easily from this, remembering that cos(x) tends to 1 as x goes to 0.
 
Some of the less careful geometric proofs are circular. The key point is that
lim sin(x)/x
should exist and not be zero and the scaling where it is one is chosen for convenience.
 
lurflurf said:
Some of the less careful geometric proofs are circular. The key point is that
lim sin(x)/x
should exist and not be zero and the scaling where it is one is chosen for convenience.

Which geometric proof do you claim is circular? Could you give an example? I am of the opinion that the geometric proofs are based on Euclidean axioms and postulates which are independent of those used in caculus.

BiP
 
One could also start with the power series definition of the sine and differentiate it term by term to get the cosine. This avoids using the Newton quotient sin(x)/x or also use various other definition of sine such as (e^{ix} - e^{-ix})/2i

I never tried this but maybe you can differentiate the continued fraction definition of the sine.
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
8
Views
4K
Replies
19
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
10K
  • · Replies 3 ·
Replies
3
Views
5K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K