I Is mass the source of spacetime?

Click For Summary
Mass is known to curve spacetime, with stress-energy density being the source of this curvature, analogous to how charge-current density sources the electromagnetic field. The discussion clarifies that while mass influences spacetime, it does not act as a source of spacetime itself. The concept of "curving" an electric field is debated, with consensus that electric fields cannot be curved in the same sense as spacetime. The solar system's dynamics can be modeled using asymptotically flat conditions, ignoring external gravitational influences from the galaxy, which are negligible for local measurements. Ultimately, the curvature of spacetime is always present, though its effects can be minimal in certain contexts.
  • #61
Angelika10 said:
they write, that a volume of a small ball of testparticles will decrease in time. And that's the basic meaning of "gravity attracts".
More precisely, that the normalized "acceleration" of the volume--the second derivative of the volume with respect to time, divided by the volume--is negative. That means the volume, if it starts from "rest" (zero rate of change with time), will decrease at a rate that increases with time.

Angelika10 said:
If I the mass is increased, will the volume increase or decrease because of the additional mass?
The Ricci tensor does not describe "mass". It describes density of stress-energy. For the simple case of a perfect fluid, the Ricci tensor--more precisely, the piece of it that determines the (negative) "acceleration" of the volume described above--will be ##\rho + 3 p##, where ##\rho## is the energy density of the fluid and ##p## is the pressure. So positive #\rho + 3p## means the "acceleration" of the volume is negative--"attractive" gravity. Note that this is for an observer who is inside the fluid, observing the behavior of a small ball of test particles that is also inside the fluid.
Angelika10 said:
can the metric tensor help? diag(B, -A, -r², -r²sin(theta))
Where is this metric tensor coming from?
 
  • Like
Likes Angelika10
Physics news on Phys.org
  • #62
PeterDonis said:
The Ricci tensor does not describe "mass". It describes density of stress-energy. For the simple case of a perfect fluid, the Ricci tensor--more precisely, the piece of it that determines the (negative) "acceleration" of the volume described above--will be ##\rho + 3 p##, where ##\rho## is the energy density of the fluid and ##p## is the pressure. So positive #\rho + 3p## means the "acceleration" of the volume is negative--"attractive" gravity. Note that this is for an observer who is inside the fluid, observing the behavior of a small ball of test particles that is also inside the fluid.
Hm, ok. I understand this. But the question is: if the energy-momentum-tensor is increased, what happens with the volume?
PeterDonis said:
Where is this metric tensor coming from?
From the standard form of a static, spherically symetric metric.

## ds^2 = B(r)c^2dt^2 -A(r)dr^2 - r^2(d\theta^2+sin^2 \theta d\phi^2) ##

so

## (g_{\mu\nu}) = diag (B(r), -A(r), -r^2, -r^2 sin^2\theta)##
 
  • #63
Angelika10 said:
if the energy-momentum-tensor is increased
What does it even mean to "increase" a tensor? A tensor is not a number.

Angelika10 said:
From the standard form of a static, spherically symetric metric.
A non-vacuum spacetime (i.e., a spacetime with a nonzero Ricci tensor, which requires a nonzero stress-energy tensor) will not necessarily be either static or spherically symmetric.
 
  • #64
PeterDonis said:
More precisely, that the normalized "acceleration" of the volume--the second derivative of the volume with respect to time, divided by the volume--is negative. That means the volume, if it starts from "rest" (zero rate of change with time), will decrease at a rate that increases with time.The Ricci tensor does not describe "mass". It describes density of stress-energy. For the simple case of a perfect fluid, the Ricci tensor--more precisely, the piece of it that determines the (negative) "acceleration" of the volume described above--will be ##\rho + 3 p##, where ##\rho## is the energy density of the fluid and ##p## is the pressure. So positive #\rho + 3p## means the "acceleration" of the volume is negative--"attractive" gravity. Note that this is for an observer who is inside the fluid, observing the behavior of a small ball of test particles that is also inside the fluid.
But this is not the Ricci but the energy-momentum tensor, ##T_{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}## (for an ideal fluid). The source of the gravitational field (or equivalently space-time curvature) is the energy-momentum-stress of the "matter", as described by the Einstein field equations,
$$R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu} = \kappa T_{\mu \nu}.$$
Here ##R_{\mu \nu}## is the Ricci tensor, ##R## its trace, and ##\kappa=8 \pi G/c^4## with ##G## being Newton's gravitational constant. The sign on the right-hand side depends on the convention, i.e., how you contract the Riemann curvature tensor to the Ricci tensor.

An equivalent form is
$$R_{\mu \nu}=\kappa \left (T_{\mu \nu}-\frac{1}{2} T g_{\mu \nu} \right), \quad T=T_{\mu}^{\mu}.$$
 
  • #65
vanhees71 said:
this is not the Ricci but the energy-momentum tensor
In the paper by Baez and Bunn that I linked to, they rearrange the field equation so that the Ricci tensor is on the LHS, in the "equivalent form" you give at the end of your post. That is because the Ricci tensor is the tensor that has the direct physical interpretation being discussed (the "acceleration" of the volume, divided by the volume, of a small ball of test particles, caused by "mass" or more precisely density of stress-energy). That is what I was referring to.
 
  • Like
Likes vanhees71
  • #66
Tenors (field vectors) are associated with an entity that consitutes matter yet in vacuum there is not matter so tenor theory (guess) is speculative.
 
  • Skeptical
Likes weirdoguy
  • #67
catlove said:
Tenors (field vectors) are associated with an entity that consitutes matter
Not necessarily. Spacetime itself is described by tensors (metric tensor, Riemann tensor, etc.) even in the absence of matter.

catlove said:
so tenor theory (guess) is speculative.
Your guess is incorrect.
 
  • Like
Likes vanhees71
  • #68
Really?

"Maxwell's electrodynamics proceeds in the same unusual way already analyzed in studying his electrostatics. Under the influence of hypotheses which remain vague and undefined in his mind, Maxwell sketches a theory which he never completes, he does not even bother to remove contradictions from it; then he starts changing this theory, he imposes on it essential modifications which he does not notify to his reader; the latter tries in vain to fix the fugitive and intangible thought of the author; just when he thinks he has got it, even the parts of the doctrine dealing with the best studied phenomena are seen to vanish. And yet this strange and disconcerting method led Maxwell to the electromagnetic theory of light!" (Duhem, 1902).
 
  • Skeptical
Likes weirdoguy
  • #69
catlove said:
Really?
Yes.

catlove said:
Duhem, 1902
A reference from 119 years ago, particularly from a philosopher and not a scientist, more particularly one that makes incorrect claims (Maxwell electrodynamics is perfectly consistent), and even more particularly when the issue it is talking about has nothing whatever to do with tensors, is not a good basis for discussion.
 
  • Like
Likes Vanadium 50, vanhees71 and Dale

Similar threads

Replies
37
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
4
Views
1K
Replies
4
Views
1K
Replies
4
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 58 ·
2
Replies
58
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K