MHB Is \( n! > 2^n \) for \( n \ge 4 \)?

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{2.3.3}$
Prove $n! > 2^n$ for $n\ge4$
ok well the only thing I know to do is just try some numbers

$n=4, \quad 4\cdot3\cdot2\cdot1=24 \quad 2^4=32 \quad \therefore 32\ge24$
$n=5, \quad 5\cdot4\cdot3\cdot2\cdot1=120 \quad 2^5=32 \quad \therefore 120\ge32$

not sure just what the proof would be and looks like it must just be intergers

[DESMOS]advanced: {"version":5,"graph":{"showGrid":false,"xAxisStep":1,"squareAxes":false,"viewport":{"xmin":-2.621396030848641,"ymin":-129.26632180463903,"xmax":26.406631626246817,"ymax":78.78768164675861}},"expressions":{"list":[{"type":"expression","id":"graph1","color":"#2d70b3","latex":"x!\\ \\left\\{x\\ge0\\right\\}","style":"SOLID"},{"type":"expression","id":"2","color":"#388c46","latex":"2^x\\ \\left\\{x\\ge0\\right\\}","style":"SOLID"}]}}[/DESMOS]uld be
 
Physics news on Phys.org
karush said:
$\tiny{2.3.3}$
Prove $n! > 2^n$ for $n\ge4$
ok well the only thing I know to do is just try some numbers

$n=4, \quad 4\cdot3\cdot2\cdot1=24 \quad 2^4=32 \quad \therefore 32\ge24$
$n=5, \quad 5\cdot4\cdot3\cdot2\cdot1=120 \quad 2^5=32 \quad \therefore 120\ge32$

not sure just what the proof would be and looks like it must just be intergers

uld be
Are you allowed to use induction? Let k be the lowest integer such that [math]k! > 2^k[/math]. Then show that [math](k + 1)! > 2^{k + 1}[/math]

-Dan
 
Re: aa2.3.3 Prove n! > 2^n for n\ge4

topsquark said:
Are you allowed to use induction? Let k be the lowest integer such that [math]k! > 2^k[/math]. Then show that [math](k + 1)! > 2^{k + 1}[/math]

-Dan

I thot that is what i did?

- - - Updated - - -
 
You showed a couple of examples which show a definite trend but didn't give an actual proof. This is a simple induction proof and basically copies what you have shown.

-Dan
 
Since $n\ge4=2^2$,
$$n!\ =\ \underbrace{n}_{\ge2^2} \cdot \underbrace{(n-1)}_{>2} \cdot \cdots \cdot \underbrace{3}_{>2} \cdot \underbrace{2}_{\ge2} \cdot 1\ >\ 2^n.$$
 
Back
Top