MHB Is \(\nabla \times (f \nabla g) = \nabla f \times \nabla g\)?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Curl Gradient
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to show that $\nabla\times (f\nabla g)=\nabla f\times \nabla g$.

We have that $f\nabla g=f\sum\frac{\partial g}{\partial x_i}\hat{x}_i$, therefore we get \begin{align*}&\nabla\times (f\nabla g)=\nabla\times \left (f\sum\frac{\partial g}{\partial x_i}\hat{x}_i \right )\\ & =\nabla\times \left (\sum f\frac{\partial g}{\partial x_i}\hat{x}_i \right ) \\ & =\nabla\times \left (f\frac{\partial g}{\partial x_1}, f\frac{\partial g}{\partial x_2} ,f\frac{\partial g}{\partial x_3} \right ) \\ & = \left [ \frac{\partial}{\partial x_2} \left (f\frac{\partial g}{\partial x_3}\right )-\frac{\partial}{\partial x_3} \left (f\frac{\partial g}{\partial x_2}\right ), \frac{\partial}{\partial x_3} \left (f\frac{\partial g}{\partial x_1}\right )-\frac{\partial}{\partial x_1} \left (f\frac{\partial g}{\partial x_3}\right ), \frac{\partial}{\partial x_1} \left (f\frac{\partial g}{\partial x_2}\right )-\frac{\partial}{\partial x_2} \left (f\frac{\partial g}{\partial x_1}\right )\right ]\\ & = \left [ \frac{\partial}{\partial x_2} \left (f\right )\frac{\partial g}{\partial x_3}+f\frac{\partial}{\partial x_2} \left (\frac{\partial g}{\partial x_3}\right )-\frac{\partial}{\partial x_3} \left (f\right )\frac{\partial g}{\partial x_2}-f\frac{\partial}{\partial x_3} \left (\frac{\partial g}{\partial x_2}\right ), \frac{\partial}{\partial x_3} \left (f\right )\frac{\partial g}{\partial x_1}+f\frac{\partial}{\partial x_3} \left (\frac{\partial g}{\partial x_1}\right )-\frac{\partial}{\partial x_1} \left (f\right )\frac{\partial g}{\partial x_3}-f\frac{\partial}{\partial x_1} \left (\frac{\partial g}{\partial x_3}\right ), \frac{\partial}{\partial x_1} \left (f\right )\frac{\partial g}{\partial x_2}+f\frac{\partial}{\partial x_1} \left (\frac{\partial g}{\partial x_2}\right )-\frac{\partial}{\partial x_2} \left (f\right )\frac{\partial g}{\partial x_1}-f\frac{\partial}{\partial x_2} \left (\frac{\partial g}{\partial x_1}\right )\right ]\\ & = \left [ \frac{\partial f}{\partial x_2} \frac{\partial g}{\partial x_3}+f\frac{\partial}{\partial x_2} \left (\frac{\partial g}{\partial x_3}\right )-\frac{\partial f}{\partial x_3} \frac{\partial g}{\partial x_2}-f\frac{\partial}{\partial x_3} \left (\frac{\partial g}{\partial x_2}\right ), \frac{\partial f}{\partial x_3} \frac{\partial g}{\partial x_1}+f\frac{\partial}{\partial x_3} \left (\frac{\partial g}{\partial x_1}\right )-\frac{\partial f}{\partial x_1} \frac{\partial g}{\partial x_3}-f\frac{\partial}{\partial x_1} \left (\frac{\partial g}{\partial x_3}\right ), \frac{\partial f}{\partial x_1} \frac{\partial g}{\partial x_2}+f\frac{\partial}{\partial x_1} \left (\frac{\partial g}{\partial x_2}\right )-\frac{\partial f}{\partial x_2} \frac{\partial g}{\partial x_1}-f\frac{\partial}{\partial x_2} \left (\frac{\partial g}{\partial x_1}\right )\right ]\\ & = \left [ \frac{\partial f}{\partial x_2} \frac{\partial g}{\partial x_3}-\frac{\partial f}{\partial x_3} \frac{\partial g}{\partial x_2}, \frac{\partial f}{\partial x_3} \frac{\partial g}{\partial x_1}-\frac{\partial f}{\partial x_1} \frac{\partial g}{\partial x_3}, \frac{\partial f}{\partial x_1} \frac{\partial g}{\partial x_2}-\frac{\partial f}{\partial x_2} \frac{\partial g}{\partial x_1}\right ]+\left [ f\frac{\partial}{\partial x_2} \left (\frac{\partial g}{\partial x_3}\right )-f\frac{\partial}{\partial x_3} \left (\frac{\partial g}{\partial x_2}\right ), f\frac{\partial}{\partial x_3} \left (\frac{\partial g}{\partial x_1}\right )-f\frac{\partial}{\partial x_1} \left (\frac{\partial g}{\partial x_3}\right ), f\frac{\partial}{\partial x_1} \left (\frac{\partial g}{\partial x_2}\right )-f\frac{\partial}{\partial x_2} \left (\frac{\partial g}{\partial x_1}\right )\right ]\end{align*}

Is everything correct so far? How could we continue? (Wondering)

Or is there an other way to show this? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Smile)

It looks correct to me, and I'm not aware of a different way to prove it.

To continue we need to realize that:
$$\pd {}{x_2}\left(\pd{g}{x_3}\right)=\pd {}{x_3}\left(\pd{g}{x_2}\right)=\frac {\partial^2g}{\partial x_2 \partial x_3}
$$
See Schwarz's Theorem in Symmetry of second derivatives. (Thinking)
 
I like Serena said:
To continue we need to realize that:
$$\pd {}{x_2}\left(\pd{g}{x_3}\right)=\pd {}{x_3}\left(\pd{g}{x_2}\right)=\frac {\partial^2g}{\partial x_2 \partial x_3}
$$
See Schwarz's Theorem in Symmetry of second derivatives. (Thinking)

How could we continue using this property? I got stuck right now... (Wondering)
 
mathmari said:
How could we continue using this property? I got stuck right now... (Wondering)

Doesn't it make the second term in your last expression become the zero vector?

And which expression are we aiming for? That is, what is $\nabla f \times \nabla g$? (Wondering)
 
I like Serena said:
Doesn't it make the second term in your last expression become the zero vector?

Ah yes! (Blush)

I like Serena said:
And which expression are we aiming for? That is, what is $\nabla f \times \nabla g$? (Wondering)

The expression that is remained is $\nabla f \times \nabla g$, so we are done! (Yes)

Thank you! (Smile)
 
Back
Top