A Is Orbital Velocity the Same as RMS of Eddy Velocities in Turbulent Flow?

AI Thread Summary
The discussion centers on the distinction between orbital velocity and the root mean square (rms) of velocity fluctuations in turbulent flow. The eddy turnover time, which relates to the size and velocity of the largest eddies, is suggested to be characterized by orbital velocity. There is skepticism about whether orbital velocity equates to rms velocity fluctuations, as many texts use this assumption cautiously. The turbulent power spectrum indicates that low frequencies dominate, suggesting that rms fluctuations are primarily influenced by larger scales. This raises questions about the validity of using rms as a reliable measure for large-scale turbulence characteristics.
rdemyan
Messages
67
Reaction score
4
Is there a difference between the orbital velocity of an eddy and the root mean square of the velocity fluctuations? I'm particularly interested in understanding the eddy turnover time of the largest eddies in a turbulent flow, which is given by the characteristic eddy size and the characteristic eddy velocity. As I understand it, this characteristic eddy velocity is the orbital velocity. The turnover time is the time needed for the spinning eddy to complete one revolution; so the orbital velocity should be used. Frankly I'm not convinced that the orbital velocity is the same as the root mean square of the velocity fluctuations. It seems that many books derive equations based on this assumption, but the authors are usually careful to state that the velocities are "of the order of" which then allows for the derivation of relatively simple equations. I would greatly appreciate thoughts on this.
 
Physics news on Phys.org
I've never heard it called orbital velocity before. I'll preface this by saying I'm not super well-versed in turbulence theory.

If you look at a turbulent power spectrum, it is highly biased toward low frequencies representing the largest eddies. This implies that the rms of the fluctuations technically contains all scales but is overwhelmingly dominated by the large scales. If an author makes the assumption you discuss, it's basically equivalent to making the assumption that the power contained in the large scales is much larger than small scales so the rms of the fluctuations are a good stand-in for the large scales.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top