Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Is Simultaneity still alive in QM?

  1. Oct 13, 2018 #1

    referframe

    User Avatar
    Gold Member

    In Classical Mechanics, according to SR, the concept of simultaneity is dead, a meaningless concept. But in QM, entanglement implies that some limited form of simultaneity exists. If we have two particles correlated due to entanglement, a measurement of one particle immediately gives us the probabilities of measurement outcomes for the other particle. “Immediately” implies some kind of simultaneity. (I realize that the above scenario does not imply faster-than-light transfer of information).

    Is simultaneity still alive in QM?

    Thanks in advance.
     
  2. jcsd
  3. Oct 13, 2018 #2

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Well, if I post a pair of shoes: one shoe is posted to you and the other shoe is posted to someone else. Then, when you open your package you "immediately" know what's in the other package. Not sure how that contradicts SR.

    Also, there's a big difference between "simultaneity is frame dependent" and "simultaneity is a meaningless concept", which sounds like pop-science nonsense, if you don't mind my saying so.
     
  4. Oct 13, 2018 #3

    PeterDonis

    Staff: Mentor

    No, it doesn't. What it implies (or rather requires) is that if you make measurements at spacelike separated events, they must commute--the results cannot depend on the order in which the measurements are made (since the order is frame-dependent).

    No, it doesn't, because the information about the result of the measurement of the first particle only tells you the probabilities of measurement outcomes for the second particle if you also know what measurement is being made on the second particle. And the information about what measurement is made on the second particle travels no faster than light. (This is another way of stating why information can't travel faster than light in measurements on entangled particles.)
     
  5. Oct 13, 2018 #4

    atyy

    User Avatar
    Science Advisor

    No and yes.

    No: Considered operationally, QM does not permit faster than light communication

    Yes: The formalism of QM (wave function collapse) requires the specification of a notion of simultaneity. The wave functions of different reference frames are not related to each other by unitary transformation.
     
  6. Oct 14, 2018 #5

    vanhees71

    User Avatar
    Science Advisor
    Gold Member
    2017 Award

    The answer is relativistic local QFT, which underlies the Stanard Model of elementary particle physics. You have local interactions only but as any quantum theory it also of course describes the (observed!) long-distance correlations of entanglement. There's no contradiction between locality of interactions and microcausality (leading the linked-cluster principle to hold) and long-distance correlations described by entanglement (which often is misinterpreted as non-locality of interactions, most prominently by Einstein, but this is only due to the misleading collapse assumption of some flavors of the Copenhagen interpretation).

    Of course quantum states observed from the point of view of observers in different inertial frames are related by unitary transformations. The very construction of relativistic QFT starts with finding the unitary representations of the proper orthochronous Poincare group (see Weinberg, QT of Fields vol. 1).
     
  7. Oct 14, 2018 #6

    referframe

    User Avatar
    Gold Member

    What if Alice and Bob agree ahead of time what type of measurements to perform? They both agree to measure the spin of their spin one-half particles in their respective "z" directions. Alice and Bob's frames would be kept parallel with their "z" directions the same.
     
  8. Oct 14, 2018 #7

    phinds

    User Avatar
    Gold Member

    I think you are talking about the SETUP of the measurement and Peter was talking about the RESULTS of the measurement, so you are not getting what he is saying. That's my story and I'm sticking with it. :smile:
     
  9. Oct 14, 2018 #8

    PeterDonis

    Staff: Mentor

    Then there is no need for any information about the measurement settings to travel anywhere, since it was predetermined in advance.
     
  10. Oct 14, 2018 #9

    Grinkle

    User Avatar
    Gold Member

    Human agreement to do something does not count as an observation that the agreement has been followed in any context- social, QM, SR, whatever.
     
  11. Oct 14, 2018 #10

    referframe

    User Avatar
    Gold Member

    I was not referring to some kind of hazy social agreement. I was adding a new requirement to the SETUP phase of the experiment. During the SETUP phase, Alice would send out a laser beam of light in HER "z" direction. Bob would then locate the beam and align his frame so that the beam is pointing in HIS "z" direction. How is that not precise?
     
  12. Oct 14, 2018 #11

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Can you explain what this achieves or what difference it makes? In general, in order to compare results effectively, the experiments would need common directions.
     
  13. Oct 14, 2018 #12

    referframe

    User Avatar
    Gold Member

    Agreed. My reply can be traced back to PeterDonis's point that (paraphrasing) one cannot call it simultaneity if Alice does not know what kind of measurement Bob is going to perform. That would be information that could travel only at light-speed. I am saying what if that information is conveyed one time, at light speed, during the SETUP phase of the entanglement experiment?
     
  14. Oct 14, 2018 #13

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Yes, but so what?
     
  15. Oct 14, 2018 #14

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    @referframe the issue with entanglement is that the results of the (initial) measurements are always correlated. Regardless of what is measured and when. There is always a frame where the measurements are simultaneous; and a frame where A's measurement precedes B's; and a frame where B's measurement precedes A's.

    The measurements do not affect each other. But, they are correlated.
     
  16. Oct 14, 2018 #15

    referframe

    User Avatar
    Gold Member

    I think I understand what you and PeterDonis are saying. My original post was whether or not QM (entanglement) has it's own special version of the concept of simultaneity. It seems like what you and PeterDonis are saying is that since a quantum measurement (the movement of a needle on a meter, the appearance of a spot on a CRT, etc.) is essentially a classical event, it's timing is subject only to classical physics, namely SR.
     
  17. Oct 15, 2018 #16

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    I'm afraid I don't understand your point. Two events are simultaneous if they happen at the same time. That begs the question of how you are measuring time, or how you define the time coordinate. Nevertheless, that is the concept of simultaneity.
     
  18. Oct 15, 2018 #17

    zonde

    User Avatar
    Gold Member

    In order to speak about experimental consequences of simultaneity you would need certain phenomena that is not predicted by QM but is not explicitly forbidden in QM. Say if there is possibility that entangled pair of particles spontaneously disentangle by remotely entangling with third and fourth system you might set up experiment that detects preferred reference frame. It would be like that: you produce entangled pair of particles A and B, then at some time ##t_{disentangle}## you change that state of the systems C and D so that there increases probability that A and B will disentangle and remotely entangle with C and D instead. Then by making measurement of A and B at different relative times to ##t_{disentangle}## (and later comparing their results for presence of entanglement) you can detect when this ##t_{disentangle}## happens locally for A and B.
     
  19. Oct 15, 2018 #18

    PeterDonis

    Staff: Mentor

    Time in what frame?
     
  20. Oct 15, 2018 #19

    PeterDonis

    Staff: Mentor

    I'm not aware of any such "remote entanglement". For two systems to be entangled, they have to interact, and interaction is local.
     
  21. Oct 16, 2018 #20

    stevendaryl

    User Avatar
    Staff Emeritus
    Science Advisor

    No, I don't think that's true. I believe you can have the following situation:
    1. Alice produces a pair of entangled particles. She keeps one and sends the other to Charlie.
    2. Bob produces a pair of entangled particles. He keeps one and sends the other to Charlie.
    3. Charlie measures the total spin of his two particles, and finds that it is spin-zero.
    I believe that it is possible for Charlie's measurement of the two particles to force Alice's and Bob's particles to be entangled, even though they never came into contact. I think @DrChinese would know.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted