MHB Is Tan(cos2x) equal to tan(2 cos^-1(x))?

  • Thread starter Thread starter Elissa89
  • Start date Start date
Click For Summary
The discussion clarifies that 2 cos^-1(x) is not equal to cos(2x), emphasizing that cos^-1(x) represents an angle θ where cos(θ) = x. To find tan(2 cos^-1(x)), the double angle formula for tangent is applied, along with the identity for tan(θ) derived from sin(θ) and cos(θ). Participants suggest substituting tan(θ) with its expression in terms of x and simplifying the resulting equation. The final expression for tan(2 cos^-1(x)) is derived as 2x√(1-x^2)/(2x^2-1). Understanding the distinction between cos^-1(x) and cos(2x) is crucial for solving the problem correctly.
Elissa89
Messages
52
Reaction score
0
tan(2 cos^-1(x))

I'm pretty sure 2 cos^-1(x) is the same as cos2x, the doubles formula, but from there I'm completely lost.
 
Mathematics news on Phys.org
Elissa89 said:
tan(2 cos^-1(x))

I'm pretty sure 2 cos^-1(x) is the same as cos2x, the doubles formula, but from there I'm completely lost.

$2\cos^{-1}(x) \ne \cos(2x)$

$\cos^{-1}(x)$ is an angle (call it $\theta$) such $\cos{\theta} = x$

$\tan(2\theta) = \dfrac{2\tan{\theta}}{1-\tan^2{\theta}}$

$\cos{\theta} = x \implies \sin{\theta} = \sqrt{1-x^2} \implies \tan{\theta} = \dfrac{\sqrt{1-x^2}}{x}$

substitute the above expression for $\tan{\theta}$ in the double angle formula for tangent and simplify the algebra.
 
Last edited by a moderator:
skeeter said:
$2\cos^{-1}(x) \ne \cos(2x)$

$\cos^{-1}(x)$ is an angle (call it $\theta$) such $\cos{\theta} = x$

$\tan(2\theta) = \dfrac{2\tan{\theta}}{1-\tan^2{\theta}}$

$\cos{\theta} = x \implies \sin{\theta} = \sqrt{1-x^2} \implies \tan{\theta} = \dfrac{\sqrt{1-x^2}}{x}$

substitute the above expression for $\tan{\theta}$ in the double angle formula for tangent and simplify the algebra.

I'm not sure I understand
 
Elissa89 said:
I'm not sure I understand
What, specifically, don't you understand? We can help you better if we know this.

-Dan
 
We are having to guess at what the OP is supposed to accomplish. Is it calculating a value for the expression given a value for x or, as we are guessing, is it to find a purely algebraic expression for the given trigonometric expression; or even something else.
 
It appears that you do not understand what "cos^{-1}(x)" means! It is the inverse function to cos(x) (limited to x= 0 to \pi so that it is one-to-one). cos^{-1}(1)= 0 because cos(0)= 1. cos^{-1}(0)= \pi/2 because cos(\pi/2)= 0, etc.

The basic fact you need to use here is that cos(cos^{-1}(x))= x so you should try to change that "tan(2..)" to "cos(..)". I would start by using the identity tan(2x)= \frac{2 tan(x)}{1- tan^2(x)}. Now use the fact that tan(x)= \frac{sin(x)}{cos(x)} and then that sin(x)= \sqrt{1- cos^2(x)}: tan(2x)= \frac{2 tan(x)}{1- tan^2(x)}= \frac{2\frac{\sqrt{1- cos^2(x)}}{cos(x)}}{1- \frac{1- cos^2(x)}{cos^2(x)}}.

Replacing each "x" with cos^{-1}(x) changes each "cos(x)" to "x" so that
tan(2cos^{-1}(x))= \frac{2\frac{\sqrt{1- x^2}}{x}}{1- \frac{1- x^2}{x^2}}= \frac{2x\sqrt{1- x^2}}{2x^2- 1}.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K