Is Tan(cos2x) equal to tan(2 cos^-1(x))?

  • Context: MHB 
  • Thread starter Thread starter Elissa89
  • Start date Start date
Click For Summary
SUMMARY

The discussion clarifies that \(2 \cos^{-1}(x)\) is not equal to \(\cos(2x)\). It emphasizes that \(\cos^{-1}(x)\) represents an angle \(\theta\) such that \(\cos(\theta) = x\). The correct approach to find \(\tan(2 \cos^{-1}(x))\) involves using the double angle formula for tangent, \(\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)}\), and substituting \(\tan(\theta) = \frac{\sqrt{1-x^2}}{x}\) to derive the expression \(\tan(2\cos^{-1}(x)) = \frac{2x\sqrt{1-x^2}}{2x^2-1}\).

PREREQUISITES
  • Understanding of inverse trigonometric functions, specifically \(\cos^{-1}(x)\)
  • Familiarity with trigonometric identities, particularly the double angle formulas
  • Knowledge of algebraic manipulation involving square roots and fractions
  • Basic understanding of tangent and its relationship with sine and cosine
NEXT STEPS
  • Study the derivation of the double angle formula for tangent in detail
  • Learn about the properties and applications of inverse trigonometric functions
  • Explore algebraic techniques for simplifying trigonometric expressions
  • Investigate the relationship between trigonometric functions and their inverses
USEFUL FOR

Mathematicians, students studying trigonometry, educators teaching trigonometric identities, and anyone interested in understanding the relationships between trigonometric functions and their inverses.

Elissa89
Messages
52
Reaction score
0
tan(2 cos^-1(x))

I'm pretty sure 2 cos^-1(x) is the same as cos2x, the doubles formula, but from there I'm completely lost.
 
Mathematics news on Phys.org
Elissa89 said:
tan(2 cos^-1(x))

I'm pretty sure 2 cos^-1(x) is the same as cos2x, the doubles formula, but from there I'm completely lost.

$2\cos^{-1}(x) \ne \cos(2x)$

$\cos^{-1}(x)$ is an angle (call it $\theta$) such $\cos{\theta} = x$

$\tan(2\theta) = \dfrac{2\tan{\theta}}{1-\tan^2{\theta}}$

$\cos{\theta} = x \implies \sin{\theta} = \sqrt{1-x^2} \implies \tan{\theta} = \dfrac{\sqrt{1-x^2}}{x}$

substitute the above expression for $\tan{\theta}$ in the double angle formula for tangent and simplify the algebra.
 
Last edited by a moderator:
skeeter said:
$2\cos^{-1}(x) \ne \cos(2x)$

$\cos^{-1}(x)$ is an angle (call it $\theta$) such $\cos{\theta} = x$

$\tan(2\theta) = \dfrac{2\tan{\theta}}{1-\tan^2{\theta}}$

$\cos{\theta} = x \implies \sin{\theta} = \sqrt{1-x^2} \implies \tan{\theta} = \dfrac{\sqrt{1-x^2}}{x}$

substitute the above expression for $\tan{\theta}$ in the double angle formula for tangent and simplify the algebra.

I'm not sure I understand
 
Elissa89 said:
I'm not sure I understand
What, specifically, don't you understand? We can help you better if we know this.

-Dan
 
We are having to guess at what the OP is supposed to accomplish. Is it calculating a value for the expression given a value for x or, as we are guessing, is it to find a purely algebraic expression for the given trigonometric expression; or even something else.
 
It appears that you do not understand what "cos^{-1}(x)" means! It is the inverse function to cos(x) (limited to x= 0 to \pi so that it is one-to-one). cos^{-1}(1)= 0 because cos(0)= 1. cos^{-1}(0)= \pi/2 because cos(\pi/2)= 0, etc.

The basic fact you need to use here is that cos(cos^{-1}(x))= x so you should try to change that "tan(2..)" to "cos(..)". I would start by using the identity tan(2x)= \frac{2 tan(x)}{1- tan^2(x)}. Now use the fact that tan(x)= \frac{sin(x)}{cos(x)} and then that sin(x)= \sqrt{1- cos^2(x)}: tan(2x)= \frac{2 tan(x)}{1- tan^2(x)}= \frac{2\frac{\sqrt{1- cos^2(x)}}{cos(x)}}{1- \frac{1- cos^2(x)}{cos^2(x)}}.

Replacing each "x" with cos^{-1}(x) changes each "cos(x)" to "x" so that
tan(2cos^{-1}(x))= \frac{2\frac{\sqrt{1- x^2}}{x}}{1- \frac{1- x^2}{x^2}}= \frac{2x\sqrt{1- x^2}}{2x^2- 1}.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K