MHB Is the Calculated Osculating Plane and Binormal Correct for $\theta=0$?

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Assistance
WMDhamnekar
MHB
Messages
376
Reaction score
28
1624277707751.png


I am working on this question. Any math help, hint or even correct answer will be accepted.
 
Physics news on Phys.org
Hi,
Answer to question (a): The equation of the osculating plane at $\theta=0$ is $-\sqrt{\frac16}x + \sqrt{\frac23}z -\sqrt{\frac16}=0$ and binormal $\hat{B}(\theta=0)=\left[-\sqrt{\frac16},-\sqrt{\frac16},\sqrt{\frac23}\right]$

Is this answer correct? In my opinion, it should be correct.

Answer (b):$\vec{r}(\theta)=\left[2\cosh{\frac{\theta}{2}}, 2\sinh{\frac{\theta}{2}},2\theta\right] \implies \vec{r'}(\theta)=\left[\sinh{\frac{\theta}{2}}, \cosh{\frac{\theta}{2}},2\right],||\vec{r'}(\theta)||=\sqrt{\sinh^2{\frac{\theta}{2}}+\cosh^2{\frac{\theta}{2}}+4}$
$||\vec{r'}(\theta)||_{(\theta=0)}=\sqrt{[0,1,4]}=\sqrt{5}, \hat{T}(\theta)=\left[\frac{\sinh{\frac{\theta}{2}}}{\sqrt{\sinh^2{\frac{\theta}{2}}+\cosh^2{\frac{\theta}{2}}+4}}, \frac{\cosh{\frac{\theta}{2}}}{\sqrt{\sinh^2{\frac{\theta}{2}}+\cosh^2{\frac{\theta}{2}}+4}},\frac{2}{ \sqrt{\sinh^2{\frac{\theta}{2}}+\cosh^2{\frac{\theta}{2}}+4}} \right],\hat{T}(\theta)_{(\theta=0)}=[0,\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}]$

Equation of the osculating plane at $\theta=0$ is 0 and binormal to the curve at point (2,0,0) is $\left[0,\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right]$
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K