MHB Is the Calculated Osculating Plane and Binormal Correct for $\theta=0$?

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Assistance
WMDhamnekar
MHB
Messages
376
Reaction score
28
1624277707751.png


I am working on this question. Any math help, hint or even correct answer will be accepted.
 
Physics news on Phys.org
Hi,
Answer to question (a): The equation of the osculating plane at $\theta=0$ is $-\sqrt{\frac16}x + \sqrt{\frac23}z -\sqrt{\frac16}=0$ and binormal $\hat{B}(\theta=0)=\left[-\sqrt{\frac16},-\sqrt{\frac16},\sqrt{\frac23}\right]$

Is this answer correct? In my opinion, it should be correct.

Answer (b):$\vec{r}(\theta)=\left[2\cosh{\frac{\theta}{2}}, 2\sinh{\frac{\theta}{2}},2\theta\right] \implies \vec{r'}(\theta)=\left[\sinh{\frac{\theta}{2}}, \cosh{\frac{\theta}{2}},2\right],||\vec{r'}(\theta)||=\sqrt{\sinh^2{\frac{\theta}{2}}+\cosh^2{\frac{\theta}{2}}+4}$
$||\vec{r'}(\theta)||_{(\theta=0)}=\sqrt{[0,1,4]}=\sqrt{5}, \hat{T}(\theta)=\left[\frac{\sinh{\frac{\theta}{2}}}{\sqrt{\sinh^2{\frac{\theta}{2}}+\cosh^2{\frac{\theta}{2}}+4}}, \frac{\cosh{\frac{\theta}{2}}}{\sqrt{\sinh^2{\frac{\theta}{2}}+\cosh^2{\frac{\theta}{2}}+4}},\frac{2}{ \sqrt{\sinh^2{\frac{\theta}{2}}+\cosh^2{\frac{\theta}{2}}+4}} \right],\hat{T}(\theta)_{(\theta=0)}=[0,\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}]$

Equation of the osculating plane at $\theta=0$ is 0 and binormal to the curve at point (2,0,0) is $\left[0,\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right]$
 
Last edited:
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top