Hi All,(adsbygoogle = window.adsbygoogle || []).push({});

I'm trying to figure out how the components of the curl transform upon changing the coordinate system. In general coordinates, the contravariant components of the curl (if applied to the velocity field; then the curl is known as vorticity) are defined as

[tex]\omega^k = \frac{\epsilon^{ijk}}{\sqrt{g}} \partial_i u _j, [/tex]

where [itex]\omega^k[/itex] is the k-th component of the vorticity, and [itex]u_i[/itex] represents the velocity field.

The permutation symbol, [tex]\epsilon^{ijk} = \mathbf{g}^i \cdot \mathbf{g}^j \times \mathbf{g}^k,[/tex] is a tensor density. But if we define the permutation symbol as [itex]\frac{\epsilon^{ijk}}{\sqrt{g}}[/itex], it is an honest tensor. If we use this tensor in the definition of the curl, as done above, shouldn't the vorticity be a true vector as well (rather than a vector density)? I guess I'm not really sure how to show that, however. Simply applying the transformation matrix to the free index doesn't seem give the right answer, because I'd ignore the contracted indices (i.e., the epsilon tensor and the determinant of the metric tensor also need to be transformed, right?). Perhaps someone can point me in the right direction. (I'm confused because I keep reading that the curl is a vector density.)

There is a related "philosphical" question: I used to think that only true vectors (or tensors/spinors in general) represent physically meaningful quantities. If an object doesn't transform like a tensor, doesn't that mean that it isn't independent of the coordinate bases?

The local rotation of a fluid is something that exists independently of our choice of a coordinate basis, so shouldn't the vorticity be a true vector? Or am I misinterpreting what a vector density really is. Perhaps the additional factor that apparently appears during the transformation is *required* to ensure that the components indeed represent the same object in every coordinate system?

Thanks for helping out!

Johannes

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Is the curl of a field a vector or a vector density?

Loading...

Similar Threads - curl field vector | Date |
---|---|

A How can curl of 4-vector or 6-vector be writen? | May 22, 2016 |

Div and curl | Feb 4, 2016 |

Curl in 5D using levi-civita tensor | Jun 22, 2014 |

Gradient and Curl | Apr 9, 2014 |

Curl of Vector Fields | May 17, 2011 |

**Physics Forums - The Fusion of Science and Community**