Is the half interval Fourier series for f(x)=x over (0,L) correct?

Click For Summary
SUMMARY

The forum discussion centers on the calculation of the sine Fourier series for the function f(x) = x over the half-interval (0, L). The user initially computes the coefficient $b_n$ incorrectly, leading to a discrepancy with the expected result provided in a reference book. The correct evaluation of the integral yields $b_n = -\frac{L}{n\pi}$, which aligns with the proper formulation of the Fourier series for f(x) = x, ultimately revealing that the series presented in the book pertains to f(x) = 1.

PREREQUISITES
  • Understanding of Fourier series and their coefficients
  • Knowledge of integration techniques, particularly integration by parts
  • Familiarity with trigonometric functions and their properties
  • Basic knowledge of series convergence and summation
NEXT STEPS
  • Study the derivation of Fourier series coefficients for piecewise functions
  • Learn about the convergence properties of Fourier series
  • Explore the differences between sine and cosine Fourier series
  • Investigate common mistakes in Fourier series calculations and how to avoid them
USEFUL FOR

Mathematicians, physics students, and engineers interested in signal processing or harmonic analysis will benefit from this discussion, particularly those working with Fourier series and their applications.

ognik
Messages
626
Reaction score
2
Please help me find my mistake - "find the Sine F/series of f(x)=x over the half-interval (0,L)"

I get $ b_n=\frac 2L \int_{0}^{L}x Sin \frac{2n\pi x}{L} \,dx $

$ = \frac 2L \left[ x(-Cos \frac{2n\pi x}{L}. \frac{L}{2n\pi x}\right] + \frac {1}{n\pi} \int_{0}^{L} Cos \frac{2n\pi x}{L} \,dx$ ... and the 2nd term evals to 0

$ = -\frac{L}{n\pi}Cos 2n \pi $ but the book gives something very different.
 
Physics news on Phys.org
ognik said:
Please help me find my mistake - "find the Sine F/series of f(x)=x over the half-interval (0,L)"

I get $ b_n=\frac 2L \int_{0}^{L}x Sin \frac{2n\pi x}{L} \,dx $

$ = \frac 2L \left[ x(-Cos \frac{2n\pi x}{L}. \frac{L}{2n\pi x}\right] + \frac {1}{n\pi} \int_{0}^{L} Cos \frac{2n\pi x}{L} \,dx$ ... and the 2nd term evals to 0

$ = -\frac{L}{n\pi}Cos 2n \pi $ but the book gives something very different.

Hi ognik,

The first term should be:
$$\frac 2L \left[ x(-\cos \frac{2n\pi x}{L} \cdot \frac{L}{2n\pi})\right]_0^L
=-\frac 1{n\pi} \left[ x \cos \frac{2n\pi x}{L}\right]_0^L
=-\frac 1{n\pi} [L\cdot 1 - 0\cdot 1]
= -\frac L{n\pi}
$$
 
Thanks ILS (I have a typo in my last line, left out the 1/L)

The book gives $x=\frac 4\pi \sum_{n-0}^{\infty} \frac{1}{2n+1} Sin \frac{(2n+1)\pi x}{L} $ (I assume they mean f(x)=)
 
ognik said:
Thanks ILS (I have a typo in my last line, left out the 1/L)

The book gives $x=\frac 4\pi \sum_{n-0}^{\infty} \frac{1}{2n+1} Sin \frac{(2n+1)\pi x}{L} $ (I assume they mean f(x)=)

Looks like there is a mix-up.
That series belongs to f(x)=1.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
9K
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K