Is the half interval Fourier series for f(x)=x over (0,L) correct?

Click For Summary

Discussion Overview

The discussion revolves around the calculation of the sine Fourier series for the function f(x) = x over the half-interval (0, L). Participants are examining the derivation of the coefficients and comparing their results with those presented in a textbook.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents the formula for the sine Fourier coefficient, $ b_n=\frac 2L \int_{0}^{L}x \sin \frac{2n\pi x}{L} \,dx $, and attempts to evaluate it.
  • Another participant corrects the evaluation of the first term in the integration by parts, suggesting it should yield $ -\frac{L}{n\pi} $ instead of the initial result.
  • There is a mention of a typo in the previous post regarding the final expression, indicating a need for clarity in the calculations.
  • One participant references the textbook result for the series expansion, noting it appears to correspond to a different function, f(x) = 1, rather than f(x) = x.

Areas of Agreement / Disagreement

Participants express uncertainty about the correctness of their calculations and the relationship between their results and the textbook. There is no consensus on the correct form of the Fourier series or the evaluation of the coefficients.

Contextual Notes

Participants have noted potential errors in their calculations and the possibility of misattributing the series to the wrong function. The discussion includes unresolved mathematical steps and assumptions about the integration process.

ognik
Messages
626
Reaction score
2
Please help me find my mistake - "find the Sine F/series of f(x)=x over the half-interval (0,L)"

I get $ b_n=\frac 2L \int_{0}^{L}x Sin \frac{2n\pi x}{L} \,dx $

$ = \frac 2L \left[ x(-Cos \frac{2n\pi x}{L}. \frac{L}{2n\pi x}\right] + \frac {1}{n\pi} \int_{0}^{L} Cos \frac{2n\pi x}{L} \,dx$ ... and the 2nd term evals to 0

$ = -\frac{L}{n\pi}Cos 2n \pi $ but the book gives something very different.
 
Physics news on Phys.org
ognik said:
Please help me find my mistake - "find the Sine F/series of f(x)=x over the half-interval (0,L)"

I get $ b_n=\frac 2L \int_{0}^{L}x Sin \frac{2n\pi x}{L} \,dx $

$ = \frac 2L \left[ x(-Cos \frac{2n\pi x}{L}. \frac{L}{2n\pi x}\right] + \frac {1}{n\pi} \int_{0}^{L} Cos \frac{2n\pi x}{L} \,dx$ ... and the 2nd term evals to 0

$ = -\frac{L}{n\pi}Cos 2n \pi $ but the book gives something very different.

Hi ognik,

The first term should be:
$$\frac 2L \left[ x(-\cos \frac{2n\pi x}{L} \cdot \frac{L}{2n\pi})\right]_0^L
=-\frac 1{n\pi} \left[ x \cos \frac{2n\pi x}{L}\right]_0^L
=-\frac 1{n\pi} [L\cdot 1 - 0\cdot 1]
= -\frac L{n\pi}
$$
 
Thanks ILS (I have a typo in my last line, left out the 1/L)

The book gives $x=\frac 4\pi \sum_{n-0}^{\infty} \frac{1}{2n+1} Sin \frac{(2n+1)\pi x}{L} $ (I assume they mean f(x)=)
 
ognik said:
Thanks ILS (I have a typo in my last line, left out the 1/L)

The book gives $x=\frac 4\pi \sum_{n-0}^{\infty} \frac{1}{2n+1} Sin \frac{(2n+1)\pi x}{L} $ (I assume they mean f(x)=)

Looks like there is a mix-up.
That series belongs to f(x)=1.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
9K
Replies
8
Views
2K