Is the Induced Electric Field Proportional to Radius in a Cylindrical Region?

AI Thread Summary
The discussion clarifies that the induced electric field in a cylindrical region is indeed proportional to the radius, as derived from the Faraday-Maxwell Law. The equation E * 2πr = - B * π r² leads to E = B * r / 2, confirming this relationship. It emphasizes that while there is no time-varying electric flux, there is a time-varying magnetic flux present. The final adjustment suggests replacing B with dB/dt, which is treated as a constant in this context. Overall, the analysis concludes that the induced electric field's magnitude increases linearly with the radius.
hidemi
Messages
206
Reaction score
36
Homework Statement
A cylindrical region of radius R contains a uniform magnetic field, parallel to its axis, with magnitude that is changing linearly with time. If r is the radial distance from the cylinder axis, the magnitude of the induced electric field inside the cylindrical region is proportional to

A) R
B) r
C) r²
D) 1/r
E) 1/ r²

The answer is B.
Relevant Equations
(See better interpretation in the "Attempt at a Solution" section)
I used the equation below and the attachment to rationalize.
https://www.physicsforums.com/attachments/282163
 

Attachments

  • 1.jpg
    1.jpg
    37.5 KB · Views: 229
Physics news on Phys.org
You used Ampere-Maxwell law while you should use Faraday-Maxwell Law. The problem statement asks for the magnitude of the electric field. There is no time-varying electric flux in this problem setup (so ##\frac{d\Phi_E}{dt}=0## but there is time-varying magnetic flux (linearly time varying)).
 
\oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {\ell }}=-{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S}

E * 2πr = - B * π r²
E = B * r /2
Therefore, E is proportional to r. Is this correct?
 
hidemi said:
\oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {\ell }}=-{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S}

E * 2πr = - B * π r²
E = B * r /2
Therefore, E is proportional to r. Is this correct?
Yes the above is correct.
 
hidemi said:
\oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {\ell }}=-{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S}

E * 2πr = - B * π r²
E = B * r /2
Therefore, E is proportional to r. Is this correct?
Change B to dB/dt (= constant).
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top