Is there a mistake in this tensor multiplication problem?

DuckAmuck
Messages
238
Reaction score
40
Homework Statement
Show that
epsilon_{ijkl} ( M^{ij} N^{kl} + N^{ij} M^{kl}) = 0
Relevant Equations
epsilon is the 4D anti-symmetric Levi-Cevita tensor. M and N are also anti-symmetric tensors.
ep_{ijkl} M^{ij} N^{kl} + ep_{ijkl}N^{ij} M^{kl}
The second term can be rewritten with indices swapped
ep_{klij} N^{kl}M^{ij}
Shuffle indices around in epsilon
ep{klij} = ep{ijkl}
Therefore the expression becomes
2ep_{ijkl}M^{ij}N^{kl}
Not zero.
What is wrong here?
 
Physics news on Phys.org
I tried, but got the same result as you did. Are you sure its not supposed to be
##\epsilon_{ijkl} ( M^{ij} N^{kl} - N^{ij} M^{kl}) = 0##?
What I did was to write everything out, using all even permutations of 1,2,3,4:
{1,2,3,4}, {1,3,4,2}, {1,4,2,3}, {2,1,4,3}, {2,3,1,4}, {2,4,3,1}, {3,1,2,4}, {3,2,4,1}, {3,4,1,2}, {4,1,3,2}, {4,2,1,3}, {4,3,2,1}
and all odd ones:
{1,2,4,3}, {1,3,2,4}, {1,4,3,2}, {2,1,3,4}, {3,2,1,4}, {4,2,3,1}, {2,3,4,1}, {2,4,1,3}, {3,1,4,2}, {3,4,2,1}, {4,1,2,3}, {4,3,1,2}
and the fact that ##M## and ##N## are anti-symmetrical, i.e. ##M^{12}= - M^{21}## etc.
 
ok i think i have solid reasoning here:

Suppose ##C^{ij} = M^{ij} + N^{ij}##

From symmetry and antisymmetry we have:

##\epsilon_{ijkl} C^{ij}C^{kl} = 0##

Also if you foil the CC product in terms of M and N you get ##C^{ij}C^{kl} = M^{ij}M^{kl} + N^{ij}N^{kl} + M^{ij}N^{kl} + N^{ij}M^{kl}##

The MM and NN terms are zero for the same reason the CC product is when multiplied by epsilon.

So this demands that

##\epsilon_{ijkl} (M^{ij}N^{kl} + N^{ij}M^{kl}) = 0##

Can someone please verify?
 
DuckAmuck said:
ok i think i have solid reasoning here:

Suppose ##C^{ij} = M^{ij} + N^{ij}##

From symmetry and antisymmetry we have:

##\epsilon_{ijkl} C^{ij}C^{kl} = 0##

Also if you foil the CC product in terms of M and N you get ##C^{ij}C^{kl} = M^{ij}M^{kl} + N^{ij}N^{kl} + M^{ij}N^{kl} + N^{ij}M^{kl}##

The MM and NN terms are zero for the same reason the CC product is when multiplied by epsilon.

So this demands that

##\epsilon_{ijkl} (M^{ij}N^{kl} + N^{ij}M^{kl}) = 0##

Can someone please verify?
No, the statement as it stands seems false to me. It is not generally the case thar ##\epsilon_{ijkl} C^{ij} C^{kl} = 0##.
 
  • Like
Likes malawi_glenn
Orodruin said:
No, the statement as it stands seems false to me. It is not generally the case thar ##\epsilon_{ijkl} C^{ij} C^{kl} = 0##.
You’re right. I am just trying to figure out *how* this could be zero at this point, as in what conditions. Otherwise I’m stumped.
 
DuckAmuck said:
I am just trying to figure out *how* this could be zero at this point, as in what conditions.

You should have been given all the conditions already, that M and N are antisymmetric rank-2 tensors.

There is always the possibility that whoever gave you this problem, is wrong / made a typo. I have been tearing my hair off several times doing excersices in general relativity books... to find out there was some typo in the problem as written.

Here is my "expanded" calculation that I did btw:

The underlined terms I will collect at the end.

## \underline{M^{12}N^{34}} + M^{13}N^{42} + M^{14}N^{23} + \underline{M^{21}N^{43}} + M^{23}N^{14} + M^{24}N^{31} + M^{31}N^{24} + M^{32}N^{41} + M^{34}N^{12} + M^{41}N^{32} + M^{42}N^{13} + M^{43}N^{21} ##
##- ( \underline{M^{12}N^{43}} + M^{13}N^{24} + M^{14}N^{32} + \underline{M^{21}N^{34}} + M^{32}N^{14} + M^{42}N^{31} + M^{23}N^{41} + M^{24}N^{13} + M^{31}N^{42} + M^{34}N^{21} + M^{41}N^{23} + M^{43}N^{12} )##
##+ N^{12}M^{34} + N^{13}M^{42} + N^{14}M^{23} + N^{21}M^{43} + N^{23}M^{14} + N^{24}M^{31} + N^{31}M^{24} + N^{32}M^{41} + \underline{N^{34}M^{12}} + N^{41}M^{32} + N^{42}M^{13} + \underline{N^{43}M^{21}} ##
##- ( N^{12}M^{43} + N^{13}M^{24} + N^{14}M^{32} + N^{21}M^{34} + N^{32}M^{14} + N^{42}M^{31} + N^{23}M^{41} + N^{24}M^{13} + N^{31}M^{42} + \underline{N^{34}M^{21}} + N^{41}M^{23} + \underline{N^{43}M^{12}} \: ) ##

The stuff I underlined:
## M^{12}N^{34} + M^{21}N^{43} - M^{12}N^{43} - M^{21}N^{34} + N^{34}M^{12} +N^{43}M^{21} -N^{34}M^{21} - N^{43}M^{12} ##

(##M^{21}= - M^{12}## and ##N^{43}= - N^{34}##)

##M^{12}N^{34} + (-1)^2 M^{12}N^{34} - (-1)M^{12}N^{34} - (-1)M^{12}N^{34} + N^{34}M^{12} +(-1)^2N^{34}M^{12} - (-1)N^{34}M^{12} - (-1)N^{34}M^{12} = 8M^{12}N^{34} ##

Well that was fun.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top