Is there a more efficient way to determine the basis of a subspace?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Basis Subspace
Click For Summary
SUMMARY

The discussion centers on determining the basis of a subspace spanned by the vectors $\vec{a}=\begin{pmatrix}4\\ 1 \\ 0\end{pmatrix}$, $\vec{b}=\begin{pmatrix}2\\ 0 \\ 1\end{pmatrix}$, and $\vec{c}=\begin{pmatrix}0\\ -2 \\ 4\end{pmatrix}$. The participants confirm that these vectors are linearly dependent, as shown by the determinant $|D|=0$. Using the Gauss algorithm, they establish that the basis of the subspace is $\{\vec{a}, \vec{b}\}$, which spans a two-dimensional space. The discussion also highlights the validity of alternative methods for determining linear independence.

PREREQUISITES
  • Understanding of linear algebra concepts such as linear dependence and independence
  • Familiarity with the Gauss elimination method for solving systems of equations
  • Knowledge of vector representation in $\mathbb{R}^3$
  • Ability to compute determinants of matrices
NEXT STEPS
  • Study the Gauss elimination method in detail for solving linear systems
  • Learn about the properties of determinants and their role in linear algebra
  • Explore the concept of vector spaces and their dimensions
  • Investigate alternative methods for determining linear independence, such as the rank of a matrix
USEFUL FOR

Students and educators in mathematics, particularly those focusing on linear algebra, as well as anyone interested in understanding vector spaces and their properties.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We are given the vectors $\vec{a}=\begin{pmatrix}4\\ 1 \\ 0\end{pmatrix}, \vec{b}=\begin{pmatrix}2\\ 0 \\ 1\end{pmatrix}, \vec{c}=\begin{pmatrix}0\\ -2 \\ 4\end{pmatrix}$.

I have shown by calculating the deteminant $|D|=0$ that these three vectors are linearly dependent.

I want to give a basis of the subspace of $\mathbb{R}^3$ that is spanned by these three vectors.

To find the basis of the subspace $\text{ span }\{\vec{a}, \vec{b}, \vec{c}\}$ we have to find a minimal subset $V$ of $\{\vec{a}, \vec{b}, \vec{c}\}$ with $\text{ span }V=\text{ span } \{\vec{a}, \vec{b}, \vec{c}\}$.

We have to use the Gauss algorithm to find the linearly independent subset, right?

$\begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
1 & 0 & -2\\
0 & 1 & 4
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row} \leftrightarrow 3.\text{row}\\

\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
0 & 1 & 4\\
1 & 0 & -2
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
4\cdot 3.\text{row}-1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
0 & 1 & 4\\
0 & -2 & -8
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}
\begin{matrix}
\\
\\
-\frac{1}{2}\cdot 3.\text{row}- 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
4 & 2 & 0\\
0 & 1 & 4\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}$

So, we get $4\lambda_1+\lambda_2=0, \lambda_2+4\lambda_3=0$, and so $\lambda_1=2\lambda_3, \lambda_2=-4\lambda_3$.

Therefore, $(\lambda_1, \lambda_2, \lambda_3)=\lambda_3 (2,-4,1), \lambda_3\in \mathbb{R}$.

For $\lambda_3=1$ we get the coefficients $(2,-4,1)$. That means that $2\vec{a}-4\vec{b}+\vec{c}=0 \Rightarrow \vec{c}=-2\vec{a}+4\vec{b}$.

Do we have to check if the vectors $\vec{a}, \vec{b}$ are linearly independent? Or can we just conclude from here that the basis that we are looking for is $\{\vec{a}, \vec{b}\}$ ? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Personally, I don't like to immediately go to matrices and determinants for a problem like this. To determine whether or not these three vectors are independent, I would use the definition of independent- suppose there exist 3 numbers, a, b, and c, such that [math]a\begin{bmatrix}4 \\ 1 \\ 0 \end{bmatrix}+ b\begin{bmatrix} 2 \\ 0 \\ 1\end{bmatrix}+ c\begin{bmatrix}0 \\ -2\\ 4\end{bmatrix}= \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix}[/math]- must a= b= c= 0?

That is the same as the three equations 4a+ 2b=0, a-2c= 0, and b+ 4c= 0. From the first equation b= -2a. From the second equation a= 2c so b= -2(2c)= -4c. But the third equation also give b= -4c. These vectors are dependent.

So the sub space they span is not three dimensional, it is either one or two dimensional. If it is one dimensional then any one vector of the given three will span it. If it is two dimensional, then any two will span it.

Try the first two vectors, [math]\begin{bmatrix}4 \\ 1 \\ 0 \end{bmatrix}[/math] and [math]\begin{bmatrix} 2 \\ 0 \\ 1\end{bmatrix}[/math]. Clearly they are independent because one is not a multiple of the other. Therefore this subspace is two dimensional and these two vectors span it.
 
Last edited by a moderator:
HallsofIvy said:
Personally, I don't like to immediately go to matrices and determinants for a problem like this. To determine whether or not these three vectors are independent, I would use the definition of independent- suppose there exist 3 numbers, a, b, and c, such that [math]a\begin{bmatrix}4 \\ 1 \\ 0 \end{bmatrix}+ b\begin{bmatrix} 2 \\ 0 \\ 1\end{bmatrix}+ c\begin{bmatrix}0 \\ -2\\ 4\end{bmatrix}= \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix}[/math]- must a= b= c= 0?

That is the same as the three equations 4a+ 2b=0, a-2c= 0, and b+ 4c= 0. From the first equation b= -2a. From the second equation a= 2c so b= -2(2c)= -4c. But the third equation also give b= -4c. These equations are dependent.

So the sub space they span is not three dimensional, it is either one or two dimensional. If it is one dimensional then any one vector of the given three will span it. If it is two dimensional, then any two will span it.

Try the first two vectors, [math]\begin{bmatrix}4 \\ 1 \\ 0 \end{bmatrix}[/math] and [math]\begin{bmatrix} 2 \\ 0 \\ 1\end{bmatrix}[/math]. Clearly they are independent because one is not a multiple of the other. Therefore this subspace is two dimensional and these two vectors span it.

I understand!

But my way would also be correct, or not? (Wondering)
 

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K