A Is there a stagnation point in turbulent flows not involving solids?

AI Thread Summary
When two free jets collide at an angle, a stagnation point typically forms in the impingement zone, around which streamlines are deflected. Recent analyses indicate that the collision may not be completely elastic, suggesting energy loss and potential turbulence in this zone. The presence of turbulence raises questions about the existence of a stagnation point, as it may be dynamically moving due to the turbulent flow. However, it is argued that a stagnation point can still exist as a fixed point where fluid velocity is zero, even in turbulent conditions. The discussion emphasizes the complexity of fluid dynamics in collisions and the potential for multiple fixed points in turbulent flows.
rdemyan
Messages
67
Reaction score
4
TL;DR Summary
Is there a stagnation point in turbulent flows not involving solids?

Reference: https://www.physicsforums.com/forums/classical-physics.61/post-thread
When two free jets collide at some impingement angle (not necessarily a head on collision), the usual assumption is that in the impingement zone there is a stagnation point around which stream lines are deflected. From this stagnation point, a thin liquid sheet is created, which eventually breaks down into droplets at some distance downstream. Originally, all analyses assumed that there was no loss of energy in the impingement zone. However, more recent results seem to suggest that the collision is not 100% elastic. My question is: if there is in fact turbulence created in the impingement zone of colliding free jets (as a result of an energy release), can there be a stagnation point? Is a stagnation point possible in a turbulent impingement zone especially when only two liquids are involved and there is no solid object.
 
Physics news on Phys.org
Welcome to PF.

If a steady flow is separated, by any collision, into one or more different paths, there must be a stagnation point. That stagnation point may be moving dynamically as a result of the turbulence.

Where there is counterflow, or an eddy, there must also be a fixed point.
 
I don't understand your comment regarding a fixed point. I assume you are stating that the fixed point is the stagnation point.
 
rdemyan said:
I assume you are stating that the fixed point is the stagnation point.
I am saying the inverse, that the stagnation point is a fixed point. The fluid there has zero velocity.

There may be other fixed points in a turbulent flow. If the flow divides into two paths at one of those points, then it is also a stagnation point.
https://en.wikipedia.org/wiki/Brouwer_fixed-point_theorem
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top