I Is there a way to calculate how rocket exhaust gas spreads out in empty space after leaving the rocket?

  • I
  • Thread starter Thread starter Albertgauss
  • Start date Start date
  • Tags Tags
    Exhaust Rocket
AI Thread Summary
Calculating how rocket exhaust gas spreads in empty space after ejection is complex due to the low temperature and pressure of outer space. The discussion highlights the lack of resources specifically addressing the expansion of gas particles outside the rocket, contrasting it with jet exhaust behavior in the atmosphere. A reference to the book "Liquid Propellant Rockets" (1960) is made, which contains a chapter on expansion processes relevant to this topic. The need for accessible and affordable resources on this subject is emphasized, as many available books are costly. Overall, understanding the dynamics of rocket exhaust in space requires further exploration of specialized literature.
Albertgauss
Gold Member
Messages
294
Reaction score
37
TL;DR Summary
Any way to calculate how rocket exhaust gas spreads out in empty space after leaving the rocketexhaust pipe?
I haven't found anything obvious about how rocket thrust gas particles would expand once they leave the thruster of the ship from which it is ejected. Inside the rocket would be the exploding gas, but outside the rocket the temperature would be ~ 3 Kelvin and zero pressure since outer space would be empty. I thought maybe there would be something similar to a jet exhaust particles expanding in upper atmosphere upon egress from the vehicle but I couldn't find anything there either. There seemed to be a lot of how heat thermodynamically expands once leaving a jet engine but nothing about how the actual gas atoms themselves spread out.

Just looking for something very basic here. Rocket fuel type? Whatever is available that people have used for this type of calculation as I don't know where to start on that, either.
 
Last edited by a moderator:
Physics news on Phys.org
There is a chapter on Expansion Processes in the book Liquid Propellant Rockets (1960).
 
Frabjous said:
There is a chapter on Expansion Processes in the book Liquid Propellant Rockets (1960).

Who is the author(s) and maybe a jpeg image? There are, surprisingly, a whole bunch of books by that name. Plus, some of the books look expensive that have/contain that name, so if a reprint is available, that would be better.
 
Albertgauss said:
Who is the author(s) and maybe a jpeg image? There are, surprisingly, a whole bunch of books by that name. Plus, some of the books look expensive that have/contain that name, so if a reprint is available, that would be better.
https://press.princeton.edu/books/paperback/9780691626000/liquid-propellant-rockets
https://www.abebooks.com/servlet/SearchResults?sts=t&cm_sp=SearchF-_-home-_-Results&ref_=search_f_hp&tn=Liquid propellant rockets&an=Altman

In case your library has it, it should also be in the old series High Speed Aerodynamics and Jet Propulsion, but I do not know the volume.
 
Last edited:
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top