Warning: somewhat long-winded post, but I think it gives good background on this topic.
Q-reeus said:
To say an accelerated (possibly highly non-uniformly accelerated) reference frame is at the same time locally inertial smacks to me of double-talk - not that I'm suggesting that of you personally - just the presumably standard notion in general.
Instantaneously at rest is one thing, but calling it inertial regardless of proper acceleration is another. Feynman accused philosophers of using words in funny ways - maybe he should have looked closer to home.
It's not double-talk, but it is insisting on a precision in the use of words that is much greater than usual even in scientific discussions. Here are the precise definitions I am using:
(1) A "reference frame" is a set of four mutually orthogonal unit vectors, one timelike and three spacelike, *at a given event*. It is only valid at that event. The timelike vector can be physically interpreted as the 4-velocity of an inertial observer that is at rest in the frame; call this observer the "fiducial" observer for the frame. This may also be the 4-velocity, at the given event, of some non-inertial (i.e., accelerated) observer that happens to be (momentarily) at rest relative to the fiducial observer at that event.
(For practical purposes, we make use of the frame in a small local patch of spacetime surrounding the event; how small depends on how accurate we want our answers to be and how curved the spacetime is in the vicinity of the event.)
Note that there is no such thing as an "accelerated" vs. "non-accelerated" reference frame by this definition. The frame doesn't care which observers happen to have a 4-velocity at the given event that coincides with the timelike basis vector of the frame, or whether some of them are or are not accelerated. The basis vectors of the frame are just vectors, defined in the tangent space at the given event; there's no such thing as an "inertial" or "accelerated" vector.
(2) A "coordinate chart" is a mapping of 4-tuples of real numbers to events in a spacetime, or in some patch of a spacetime. If we want to write down actual mathematical expressions for the basis vectors of some frame at some event, we need to define a coordinate chart to write them down in (at least, we do for the most commonly used way of treating such problems). Different coordinate charts covering a patch of spacetime containing a given event will lead to different mathematical expressions for the basis vectors of a frame at that event. But the geometric objects, the basis vectors of the frame, stay the same regardless of which chart we use.
(3) A "frame field" is a mapping of frames (i.e., sets of 4 mutually orthogonal vectors in a tangent space) to events in a spacetime, or in some patch of a spacetime. The most common way of specifying a frame field is to write down the basis vectors of the frames in the field as functions of spacetime position--i.e., as functions of the coordinates in some coordinate chart. The reason frame fields are useful is that they provide a convenient link between something that has a clear physical interpretation (frames at particular events) and something that has a lot of well-tested mathematical machinery associated with it (coordinate charts). So, for example, if I want to know if a family of observers associated with a particular frame field (such as the frame field of "static" observers in Schwarzschild spacetime--see below) is "accelerated" or not, I can write the frame field in terms of a coordinate chart such as the standard Schwarzschild exterior coordinates, and then compute derivatives of the basis vectors as a function of the coordinates (which in this case means functions of r).
(4) An "observer" is modeled as a particular timelike worldline in spacetime. However, usually we aren't interested in single observers as much as we are in families of observers that all share some property (such as static observers in Schwarzschild spacetime). Such families of observers are most usefully described by frame fields; the worldlines of particular observers within the family are then given by the integral curves of the frame field (more precisely, of the timelike vector of the frame field, considered as a vector field on spacetime).
This allows us to make sense of the notion of "inertial" or "accelerated" observers, in terms of the corresponding notions with respect to frame fields (see above): if I take the derivative of the timelike basis vector of the frame field, along the integral curves of that same timelike basis vector, I get the "proper acceleration" of the observers traveling along those integral curves. If it's zero, the observers are inertial; if it's not zero, they are accelerated. However, these terms clearly apply only when we have a full frame *field*; they don't apply if all we have is a single frame (i.e., if we're only looking at a single event). Individual frames can't be "accelerated", because there's no way to compute any derivatives if all you have is vectors at a single event.
Hopefully that wasn't too long.

But I hope it helps in understanding what's going on. For example:
Q-reeus said:
Again, I'm having trouble reconciling an observer static = at rest in a SC (thus experiencing proper acceleration) being at the same time in a locally inertial frame.
The observer experiences proper acceleration in the sense that the frame *field* associated with the family of static observers is accelerated (by the definition given above). But if we are only looking at a single event, then all the observer has at that event is a particular 4-velocity, which is the timelike basis vector of his frame at that event. We can't tell whether the derivative of his timelike basis vector along his worldline is nonzero unless we look at the worldline, i.e., multiple events, not just one event.
So in this respect, perhaps the term "local inertial frame" is a misnomer as well; it should just be "local frame", with the particular observer whose 4-velocity defines the timelike basis vector specified if necessary. The reason the term "local inertial frame" is often used is that it is often convenient to adopt a coordinate chart in the small local patch of spacetime around the given event in which the metric is (to the desired approximation) the flat Minkowski metric. But there is no requirement that we do this in order to define the basis vectors of the frame. So this is partly my fault for not following my own advice about adopting precise terminology.
Q-reeus said:
Always before I have seen locally inertial connected with geodesic motion = free-fall = only tidal forces present, never 'full g'. Wow - this is is a real revelation. The words 'inertial frame' seem to have lost all meaning - after all proper acceleration is an intensive property that affects physics 'at a point' - stress, energy density etc.
Strictly speaking, proper acceleration can't be defined "at a point", because strictly speaking, derivatives can't be computed "at a point". Our notation invites the misconception that they can, but they can't. As noted above, when we compute the proper acceleration at an event of a particular observer, we are implictly assuming not just a frame at that particular event, but an entire frame field on the spacetime, with the observer following one integral curve of (the timelike basis vector of) that frame field.
Q-reeus said:
I get the impression 'tangent space' relates to gradients and higher derivatives of such at a point, which per se doesn't bother me.
Kinda sorta. If you want to get more confused, you can try the Wikipedia page:
http://en.wikipedia.org/wiki/Tangent_space
The key point is that, strictly speaking, when we talk about scalars, vectors, tensors, etc. defined "at an event", what we are really talking about is scalars, vectors, tensors, etc. defined *in the tangent space* at that event. Each distinct event has its own distinct tangent space, so in order to compute derivatives of scalars, vectors, tensors, etc., we need to be able to map those objects in the tangent space at one event to the "corresponding" objects in the tangent space at another event. When you see people talking about the "connection", "parallel transport", etc., that's what they're talking about: agreeing on how that correspondence between tangent spaces is to be determined.
Q-reeus said:
Above sure seemed to say that, unlike 'ordinary' conservation of energy which *globally* fails in general in GR, here with the SET we have a genuinely conserved quantity. But now I am confronted with that this SET 'conservation law' is valid also only strictly at a point - and therefore fails globally just as 'ordinary' energy-momentum does. Forgive me for concluding that such an at-a-point-only conservation principle is not much of a guide or use.
In a curved spacetime, in general there is *no* quantity that is "globally conserved" in the sense you mean here. The SET is only "locally conserved" in the sense you mean here. But if it's "locally conserved" at every event, that amounts to saying that no stress-energy can be created or destroyed anywhere in the spacetime, which is a very useful property for the SET to have, whether or not it satisfies your intuitions. IMO, the cure for that is to change your intuitions; we can't change this aspect of the theory of GR in the general case without breaking it altogether (at least, nobody has figured out a way to yet, and many have tried).
Q-reeus said:
Getting back to my scenario in #1, note that with HFGW's gravity can be arbitrarily weak even at local regions of most violent inter-particle accelerations. It is only owing to the vast numbers and huge accelerations that appreciable GW's are generated. In principle one could construct a multilayered heat shield around a HFGW source at sufficient radius that outgoing flux of internal EM radiation matches that of incoming CMBR arbitrarily closely, and essentially the sole outgoing flux is from HFGW's. Given sufficient time, a large proportion of initial mass M within has been converted to GW's, and without a doubt for the remaining gravitating mass M', M'<<M. Yet what seems like to me physics variety of Orwellian Newspeak maintains that SET has been conserved? This doesn't quite add up as a bottom-line accounting procedure imo.
The SET is conserved as a geometric identity; as DaleSpam pointed out, if the EFE is satisfied, the SET is conserved automatically. That's a general mathematical theorem that applies to any solution of the EFE. We don't have to know the details about "where the stress-energy goes" to know that the theorem holds. Those details may well be useful if you are trying to make the best match you can between your intuitions and what the EFE says, but as I said above, the bottom line IMO is that if the EFE clashes with your intuitions, you need to change your intuitions. Cases like the binary pulsar, which experimentally show energy loss due to GWs, do not call the EFE into question; they *validate* the EFE, because the EFE was used to calculate the predictions that were matched to the experimental data. (In the follow-up blog post I'm working on, I will try to give at least a rough picture of how the calculations work.)