Is There Really a Strictly Conserved Stress-Energy Tensor in GR?

  • #51
PeterDonis said:
A side comment: the Bondi mass isn't useful if one is trying to find a connection between externally measured mass and the SET, because the Bondi mass (like the ADM mass) is found by integrating the metric coefficients, not the SET components. The Komar mass is an integral over SET components, so it intuitively seems like a better choice for seeing how "mass" corresponds to "amount of stuff"; but of course, since the Komar mass also depends on the metric, it doesn't "fix" the issues involved with physically interpreting integrals over curved spacetimes (I put "fix" in scare-quotes because there is *no way to fix those issues; they're there, and we just have to deal with it).

Agreed, but I'm not trying to relate externally measured mass to SET. I'm trying to relate decline in externally measured mass to emission of radiation. For that, Bondi mass is appropriate. And I don't dispute your earlier post that, for practical (approximate) purposes, you can use Komar mass for slowly changing bodies. But, obviously, if you are trying to address issues of principle in conservation of energy in GR, you can't be approximate.
 
Physics news on Phys.org
  • #52
Q-reeus said:
Presence of GW's, even of the coherent variety owing to a single emitter, cannot of themselves be altering metric locally

Apparently you still don't understand what "GWs *are* changes in the metric" means.

Q-reeus said:
in any time-averaged way

Time-averaged or not time-averaged, makes no difference. Either way the metric *does* change.

Q-reeus said:
Because by definition they are non-SET source thus not a source of Ricci curvature period

This part is true, yes. GWs are "waves of changing Weyl curvature". Which means that this...

Q-reeus said:
or of Weyl curvature on time-averaged basis.

...is wrong. You should really look at the actual theory of GWs before making these claims.

Q-reeus said:
So all you can legitimately mean by above quote is that changed metric owing to GW emission is indirect

No, it isn't. It's as direct as can be: the GWs *are* the changes in the metric. They are identical.

Q-reeus said:
via reduction in gravitating mass of body

This is backwards. The reduction in the gravitating mass of the body is due to the changes in the metric, not the other way around.

Q-reeus said:
Gravitating mass is disappearing from body with no balancing/conserving flux of gravitating media out of system (you know - GW's don't gravitate).

This is not correct. Remember the second part of my blog post, where I said that gravity as a quantum field is self-interacting? And how the classical limit of that quantum field theory, the Einstein-Hilbert action, leads to a field equation, the EFE, which is *also* nonlinear, i.e., self-interacting? That is equivalent to saying that GWs *do* "self-gravitate"--GWs do interact with each other.

The reason this self-interaction doesn't show up in any practical sense is that any GWs that we have any hope of detecting here on Earth in the foreseeable future are so weak that even if we detect the GWs themselves, we have no hope of detecting the much smaller self-interactions between them. But you are talking "in principle", and in principle, GWs *do* interact with each other, and *do* "gravitate" in the sense you are using the term here.

Q-reeus said:
Why bother having having such a SET divergence law given in the real world extended spacetime arena it's a proper, accurately predictive integral form that is needed?

Because the integral form is *not* needed to make predictions. For example, in the binary pulsar case, AFAIK, the calculations are done using the EFE (they are numerical calculations since nobody knows any closed-form analytical solution for two bodies orbiting each other in GR), not using any integral forms. Again, you should really learn more about the actual theory, and how actual predictions are made, before making these claims.

Q-reeus said:
A lot of GR folks must see something useful to it I can't.

Yes, they do.

Q-reeus said:
Perhaps the sheer mathematical beauty and symmetry is so appealing.

It is, but that's not the reason the theory has survived.

Q-reeus said:
No chance Nature might have a different view.

In all experiments to date that I'm aware of, Nature's view matches GR's. Do you have any examples where that's not true?

Q-reeus said:
I maintain standard GR position on this is a grand oxymoron

And I maintain that this is because you don't understand what the "standard GR position" actually says; your criticisms are not of GR, but of your own straw-man version of GR that doesn't match the basic theory and doesn't match how the theory is actually used.
 
  • #53
The Vaidya metric is a simple example where the gravitating mass is reducing because radiation is carrying away gravitating 'stuff'. The exterior is not a vacuum, but has the geometrical optics type SET.

http://en.wikipedia.org/wiki/Vaidya_metric
 
Last edited:
  • #54
PAllen said:
Agreed, but I'm not trying to relate externally measured mass to SET. I'm trying to relate decline in externally measured mass to emission of radiation. For that, Bondi mass is appropriate.

Yes, agreed.
 
  • #55
Mentz114 said:
The Vaidya metric is a simple example where the gravitating mass is reducing because radiation is carrying away gravitating 'stuff'.

Yes, but in this case the radiation is EM, and so is associated with a non-zero SET. So it's easier intuitively to see the connection between radiated energy and reduced gravitating mass in the body.
 
  • #56
Q-reeus said:
I maintain standard GR position on this is a grand oxymoron
And your position is without evidence.
 
  • #57
PAllen said:
Q-reeus: "Presence of GW's, even of the coherent variety owing to a single emitter, cannot of themselves be altering metric locally (i.e. where they are passing through)"
Ignoring rest for now. This is false. GW is nothing but changing metric. GW without changing metric is like saying EM with no changing E or B field.
Hopefully just a misunderstanding here. Your quote has selectively omitted the part that modifies and that imo crucially matters: "...in any time-averaged way, according to GR." This is in contrast to equivalent energy flux of EM radiation - which does alter metric locally on time-averaged basis precisely because EM radiation is treated as a SET contributor. The momentary fluctuations in Weyl curvature (as stated zero when averaged over a complete cycle or otherwise on a stochastic averaging measure) add nothing to gravitating energy density (hence Weyl curvature from GW's does not induce an added Ricci curvature component). I was talking about contribution to system gravitating mass - and by definition GW's cannot be doing so - GW energy density is strictly by GR a non-gravitating energy density. Agreed? That's the point being made, or rather summarized in part in #49. An outgoing energy flux that contains no SET contribution. Hence, to labor the point yet again - the books do not balance gravitating mass-wise, despite what a covariantly divergence-free SET would suggest!
 
  • #58
PeterDonis said:
Q-reeus: "Gravitating mass is disappearing from body with no balancing/conserving flux of gravitating media out of system (you know - GW's don't gravitate)."
This is not correct. Remember the second part of my blog post, where I said that gravity as a quantum field is self-interacting? And how the classical limit of that quantum field theory, the Einstein-Hilbert action, leads to a field equation, the EFE, which is *also* nonlinear, i.e., self-interacting? That is equivalent to saying that GWs *do* "self-gravitate"--GWs do interact with each other.

The reason this self-interaction doesn't show up in any practical sense is that any GWs that we have any hope of detecting here on Earth in the foreseeable future are so weak that even if we detect the GWs themselves, we have no hope of detecting the much smaller self-interactions between them. But you are talking "in principle", and in principle, GWs *do* interact with each other, and *do* "gravitate" in the sense you are using the term here.
Not accepting this at all. Your blog contrasted the 'yes' self-interaction/self-gravitation of quantum gravity theories with 'no' classical GR position that holds gravity does not gravitate - period. Not a contributor to SET in any form - period. I quote you verbatim from https://www.physicsforums.com/blog.php?b=4287:
It's important to note that there is no contradiction between the two answers we have just described. "Gravity" in the two answers means two different things: gravity as a quantum field does gravitate (the field interacts with itself), but gravity as the classical tensor satisfying the Bianchi identity doesn't gravitate, because there is nothing "left over", once the Bianchi identity is satisfied, to contribute to the source on the RHS of the EFE.

To sum up what we've said so far: we've talked about two possible ways to answer our title question, and they lead to opposite answers:

(1) In order to ensure conservation of the source, the complete Einstein tensor, including *all* contributions from gravity, must appear on the LHS of the EFE; there is nothing left over to contribute to the "source" on the RHS of the EFE. So in this sense, gravity does *not* gravitate.
You have left yourself wide-open on this. A pity because I wanted to finish it up in #49 on a good note, but can't tolerate the blatantly conflicting statements you have made here. I will not bother with the rest of your post - above is key issue. Will the real PeterDonis please stand up.
 
Last edited by a moderator:
  • #59
Q-reeus said:
Hopefully just a misunderstanding here. Your quote has selectively omitted the part that modifies and that imo crucially matters: "...in any time-averaged way, according to GR." This is in contrast to equivalent energy flux of EM radiation - which does alter metric locally on time-averaged basis precisely because EM radiation is treated as a SET contributor. The momentary fluctuations in Weyl curvature (as stated zero when averaged over a complete cycle or otherwise on a stochastic averaging measure) add nothing to gravitating energy density (hence Weyl curvature from GW's does not induce an added Ricci curvature component). I was talking about contribution to system gravitating mass - and by definition GW's cannot be doing so - GW energy density is strictly by GR a non-gravitating energy density. Agreed? That's the point being made, or rather summarized in part in #49. An outgoing energy flux that contains no SET contribution. Hence, to labor the point yet again - the books do not balance gravitating mass-wise, despite what a covariantly divergence-free SET would suggest!

Weyl curvature contributes to gravitational mass. This is easily seen in the SC geometry, for which SET=0 and Ricci curvatrue=0, everywhere. Komar mass volume integral is zero (or undefined, perhaps, because of the singularity). Meanwhile, ADM mass = Bondi mass (in this geometry they are equal) = M parameter of metric.

In the case of GW flowing out of some region, in a spacetime asymptotically flat at infinty, the ADM mass stays constant, the Bondi mass decrease. Each is computed using Weyl curvature in the case where there is only vacuum outside said region (because both are defined in terms of limit of metric integration as you go to infinity).

The books balance at infinity for spacetimes meeting certain boundary conditions. Otherwise, they don't balance at all. For our universe, it appears they don't balance at all. There are actually many lines of evidence for the proposition the conservation of total energy cannot be achieved in an expanding universe, and it may be considered a plus that GR predicts this.
 
Last edited:
  • #60
Q-reeus said:
Your blog contrasted the 'yes' self-interaction/self-gravitation of quantum gravity theories with 'no' classical GR position that holds gravity does not gravitate - period. Not a contributor to SET in any form - period.

You apparently failed to read this in what you quoted:

"Gravity" in the two answers means two different things

The contrast I was drawing was *not* between a classical GR view of gravity and a quantum view of gravity. It was between two different meanings of the word "gravity": "gravity" as "the LHS of the EFE, vs. the RHS of the EFE" vs. "gravity" as "a massless, spin-two field". Gravity in the first sense does not gravitate; gravity in the second sense does.

*Both* of these senses of the word "gravity" are part of GR, and *both* answers to the question are part of GR. I was most emphatically *not* trying to contrast a "GR answer" to the question with some other theory's answer. To briefly recap what I said in the blog post:

(1) The EFE has "gravity" on the LHS, and "stress-energy" on the RHS. The RHS is the "source" that produces the gravity on the LHS, and there is no "stress-energy due to gravity" on the RHS of the EFE. So in this sense, gravity does not gravitate.

(2) The EFE is nonlinear, because the action it is derived from (the Einstein-Hilbert action) is nonlinear, because that action is the classical limit of the quantum field theory of a massless, spin-two field, which is nonlinear. "Nonlinear" means "self-interacting". So in this sense, gravity does gravitate.

Notice that *both* answers refer to the EFE; *both* answers are therefore "GR" answers. They just refer to different properties of the EFE, which is why they are different answers.

Q-reeus said:
can't tolerate the blatantly conflicting statements you have made here.

There is no conflict. You need to read more carefully. What's more, you need (IMO) to read with a real intent to understand, instead of just looking for things you can contradict.

This material is not easy; I understand that. I have been reading about GR, thinking about it, working problems in it, and discussing it with others, for about 25 years now. Many people here on PF have been doing it longer than that. We know this is not stuff you can grasp overnight. But coming into it with the attitude that "if I see an apparent contradiction and nobody can explain it to my satisfaction, GR must be wrong, inconsistent, flawed, etc." is not likely to get you anywhere. The fact that the theory *is* consistent and experimentally verified (to 14 decimal places) within its domain of applicability does *not* guarantee that there will be an explanation for it that you can intuitively grasp.

Your response to this is basically "I trust my intuition more than I trust your assertions that the theory is correct even though you can't explain it to my satisfaction." I understand that that seems like a reasonable response to you. That doesn't change the fact that it's wrong. Nature doesn't care about your intuitions. It doesn't care about *my* intuitions. It also doesn't care about whether I can explain to you why the things I am saying are correct.

Also, to be clear, I am *not* saying that you should just abandon your intuitions and blindly accept what I am telling you, or what anyone else here on PF is telling you. Feynman, who has been quoted several times now in this discussion, once said: "What I cannot create, I do not understand". I'm the same way, and I suspect you are too. The things I am saying in these threads, and that I put into my blog posts, are things I have created; that's the only way I can understand them. Of course my "creations" aren't original; I'm just rediscovering for myself paths of reasoning that many, many people have followed before me. But I only understand the paths that *I* have followed myself.

The reason I'm responding to your questions is that I hope that, at some point, one of those paths of reasoning will open up for you. I have been assuming that that's why you are posing the questions in the first place: here's this theory that everybody says is correct, but you can't see any path of reasoning that gets you to where everybody says they are, and you would like some help in finding it. I understand that it's frustrating when people keep on insisting there's a path, and pointing in various directions, and all you see is underbrush. Unfortunately, that's just an indication of how hard the paths are to find in this neck of the woods.
 
  • #61
PAllen said:
Weyl curvature contributes to gravitational mass. This is easily seen in the SC geometry, for which SET=0 and Ricci curvatrue=0, everywhere. Komar mass volume integral is zero (or undefined, perhaps, because of the singularity). Meanwhile, ADM mass = Bondi mass (in this geometry they are equal) = M parameter of metric.
You haven't filled in here an identifying detail but I can pretty well assume this is talking about an exterior BH spacetime. That way your words makes sense. Clearly you are here saying curvature (Weyl) of the external field acts as it's own source - gravity gravitates of necessity. But only if it's Weyl curvature giving rise to further Weyl curvature. Yet oddly (on an intuitive level) the EFE's forbids any similar situation of Ricci curvature acting as it's own further source. Interesting. At last that issue now appears cleared up. Got a very different slant on Weyl curvature - as non-source some time back: https://www.physicsforums.com/showpost.php?p=3781365&postcount=26 https://www.physicsforums.com/showpost.php?p=3781823&postcount=28 etc.
[further perusing there, and this a better one: https://www.physicsforums.com/showpost.php?p=3786286&postcount=46]

Possibly explainable as completely complimentary but if it is representative of what may be termed 'GR logic', I fear never being able to quite get the hang of it. No need to question where the severe bouts of headache have been coming from.
In the case of GW flowing out of some region, in a spacetime asymptotically flat at infinty, the ADM mass stays constant, the Bondi mass decrease. Each is computed using Weyl curvature in the case where there is only vacuum outside said region (because both are defined in terms of limit of metric integration as you go to infinity).
And at last is adding up for me in a far more rational way.
The books balance at infinity for spacetimes meeting certain boundary conditions. Otherwise, they don't balance at all. For our universe, it appears they don't balance at all. There are actually many lines of evidence for the proposition the conservation of total energy cannot be achieved in an expanding universe, and it may be considered a plus that GR predicts this.
This bit I for now at least have no basic argument with.
 
Last edited:
  • #62
PeterDonis said:
They just refer to different properties of the EFE, which is why they are different answers.
Not from my reading of that blog. A further quote:
In other words, on the "gravity as just another quantum field" view, classical GR is just a low-energy effective field theory; it is what you get when gravity is too weak for its quantum nature to show up. (Don't be misled by that "too weak", btw; in the sense of the term used here, gravity is "too weak" at, and well inside, the horizon of a stellar-mass black hole.)
Not different properties on my reading - just hugely differing levels of significance. So huge there is no effective non-linearity owing to field self-contribution in classical GR - where it is in fact taken as precisely zero. Hence structure of EFE's - with only field curvature on LHS and only non-gravitational field contributing SET source on RHS. A consistent position throughout that blog, as per my previous quote. It has struck me now as per last entry in response to PAllen's last post that there is a gravity gravitates thing in GR - just completely divorced from EFE's. But as per those [STRIKE]two[/STRIKE] three links there - your own position on role of Weyl curvature as or not as source could do with some clarification. In that thread my distinct impression was you denied Weyl curvature (wasn't specifically referred to as Weyl curvature there, but that's what was meant) could act as source of gravitation.

If just once in your blog post there was a statement saying there is a sizable contribution to mass from GW Weyl curvature, likely none of this would be happening. It would have clicked for me - EFE relationships are just one part of the scene to consider. You were sort of saying something along that line in #52 - GW's do self-gravatate, but tied it to quantum model and as per above quote, levels of non-linearity are thence ridiculously tiny in classical setting even inside of BH! In other words, GW's by that logic of no account as source of gravitating mass flux in scenario discussed.

Hope we can finish this up on a high note - I'm sure you have been meaning well, as the rest of your post is conveying.
 
Last edited:
  • #63
Q-reeus said:
Not different properties on my reading - just hugely differing levels of significance. So huge there is no effective non-linearity owing to field self-contribution in classical GR - where it is in fact taken as precisely zero.

This is wrong. There *is* "effective nonlinearity" in classical GR. That's the point. Once again, please read more carefully: I said a number of times that *the EFE* is nonlinear.

Q-reeus said:
Hence structure of EFE's - with only field curvature on LHS and only non-gravitational field contributing SET source on RHS.

That's *not* the same as saying the EFE is linear. Where did I say that writing the EFE that way makes it linear? (Just as a general point, you can't make a nonlinear equation linear by rearranging terms.)

For example, the Schwarzschild solution itself is a manifestation of the classical nonlinearity of the EFE. Consider: we have a *vacuum* solution (no nonzero SET anywhere) which is *curved*, and the curvature is all Weyl curvature (as it must be since there is no nonzero SET anywhere, and only nonzero SET can produce Ricci curvature). Only a nonlinear equation can produce this kind of solution with zero "source" on the RHS.

(Mathematically, you can see that the EFE is nonlinear by looking "under the hood" of the Einstein tensor on the LHS; you will see that it contains products of derivatives of the metric, i.e., it is quadratic in derivatives of the metric. By contrast, Maxwell's Equations are linear in derivatives of the EM field.)

Q-reeus said:
It has struck me now as per last entry in response to PAllen's last post that there is a gravity gravitates thing in GR - just completely divorced from EFE's.

As you can see from my example above, the presence of Weyl curvature is not "completely divorced" from the EFE. It is still constrained by having to solve the *vacuum* EFE, i.e., the EFE with zero source (i.e., zero SET). This probably deserves a separate thread if you want more discussion of it, since it's a general point about the relationship between the EFE and the various tensors that describe aspects of gravity.

Q-reeus said:
In that thread my distinct impression was you denied Weyl curvature (wasn't specifically referred to as Weyl curvature there, but that's what was meant) could act as source of gravitation.

If "source" means "what's on the RHS of the EFE", then yes, Weyl curvature (or *any* curvature) does not act as a "source" of gravitation. But that doesn't mean Weyl curvature can't "propagate", i.e., that Weyl curvature at one event can't lead to Weyl curvature at another event, without any nonzero SET appearing in between. See above.

[Edit: I realize that "propagate" is a bad word; unfortunately, we don't have a word for the way that *tidal* Weyl curvature (the kind that's present in the Schwarzschild solution) can be present in a source-free solution of a nonlinear field equation, as opposed to propagating waves of Weyl curvature (which could be present even if the EFE were linear, just as EM waves can be present in a solution of the source-free Maxwell Equations, which are linear).]

Q-reeus said:
If just once in your blog post there was a statement saying there is a sizable contribution to mass from GW Weyl curvature, likely none of this would be happening. It would have clicked for me - EFE relationships are just one part of the scene to consider. You were sort of saying something along that line in #52 - GW's do self-gravatate, but tied it to quantum model and as per above quote, levels of non-linearity are thence ridiculously tiny in classical setting even inside of BH!

I can see how some of the language in the blog post could be confusing on this point. I'll try to fix it up to make clear that the nonlinearity appears at the classical level, not just the quantum level. Bear in mind that the nonlinearity does not just show up in GWs, and just because it's too weak to detect in GWs (or at least any GWs we are likely to detect in the foreseeable future) doesn't mean it's too weak to detect *anywhere*. See comments above about the Schwarzschild solution.

[Edit: As a further note, you say "GW Weyl curvature". GWs are *not* the only kind of Weyl curvature. There are no GWs in Schwarzschild spacetime, but there is Weyl curvature.]
 
Last edited:
  • #64
PeterDonis said:
I can see how some of the language in the blog post could be confusing on this point. I'll try to fix it up to make clear that the nonlinearity appears at the classical level, not just the quantum level.

I have made some changes to the blog post (the original "does gravity gravitate?" post, not the follow-up, which is still in draft) to try to make the above issue clearer. Please feel free to comment.
 
  • #65
PeterDonis said:
That's *not* the same as saying the EFE is linear. Where did I say that writing the EFE that way makes it linear? (Just as a general point, you can't make a nonlinear equation linear by rearranging terms.)
I certainly acknowledge that you have never claimed EFE's are linear equations.
For example, the Schwarzschild solution itself is a manifestation of the classical nonlinearity of the EFE. Consider: we have a *vacuum* solution (no nonzero SET anywhere) which is *curved*, and the curvature is all Weyl curvature (as it must be since there is no nonzero SET anywhere, and only nonzero SET can produce Ricci curvature). Only a nonlinear equation can produce this kind of solution with zero "source" on the RHS.
Agreed. But afaik the unavoidable non-linearity here is inherent in that metric spatial and temporal components are the base entities that vary on LHS. It's the next level of non-linearity that's in question - whether curvature is in part it's own source. Put very crudely, C = T can be non-linear eq'n whether or not T is itself inclusive of terms that are functions of C. Say C = T with T = T0+f(C) then one rewrites as C = T/(1-f(C)) which manifestly guarantees C is partially it's own source and in general also non-linear, or introduces added non-linearity over what otherwise might be - an explicit 'gravity gravitates' type relation.
(Mathematically, you can see that the EFE is nonlinear by looking "under the hood" of the Einstein tensor on the LHS; you will see that it contains products of derivatives of the metric, i.e., it is quadratic in derivatives of the metric. By contrast, Maxwell's Equations are linear in derivatives of the EM field.)
OK but as per above remarks, such non-linearity need have no bearing on whether LHS terms self-couple. Length and time scales can vary with length and time (inherent non-linearity) purely owing to coupling to RHS source matter, without there needing to be any input of curvature inducing more curvature.
As you can see from my example above, the presence of Weyl curvature is not "completely divorced" from the EFE. It is still constrained by having to solve the *vacuum* EFE, i.e., the EFE with zero source (i.e., zero SET). This probably deserves a separate thread if you want more discussion of it, since it's a general point about the relationship between the EFE and the various tensors that describe aspects of gravity.
Yes I agree to having overstated on that one. 'Propagation' must involve a non-zero SET in some manner.
[Edit: As a further note, you say "GW Weyl curvature". GWs are *not* the only kind of Weyl curvature. There are no GWs in Schwarzschild spacetime, but there is Weyl curvature.]
Understood that much. I can appreciate that there has been here differing interpretations on curvature and or past light-cone SET, as source in certain situations. Maybe nothing more fundamental than that. Anyway sorry for getting a little hot under the collar - apologies for evidently misinterpreting some of your earlier statements as contradictory when evidently really a combination of my limited understanding, and here and there some less than optimal terminology. Well thankfully I consider to have gained a little increased insight through it all. Just a little too much turmoil getting there for my taste. :rolleyes: Must go. :zzz:
 
  • #66
Q-reeus said:
the unavoidable non-linearity here is inherent in that metric spatial and temporal components are the base entities that vary on LHS.

No, that by itself is not enough. The spatial and temporal components of the EM field are the "base entities that vary" on the LHS of Maxwell's Equations, but that doesn't make them nonlinear. See below.

Q-reeus said:
It's the next level of non-linearity that's in question - whether curvature is in part it's own source.

And that *is* present in the EFE, because it's *quadratic* in the derivatives of the metric components, whereas it's *not* present in Maxwell's Equations, because those are linear in the derivatives of the EM components.
 
  • #67
Q-reeus said:
Anyway sorry for getting a little hot under the collar - apologies for evidently misinterpreting some of your earlier statements as contradictory when evidently really a combination of my limited understanding, and here and there some less than optimal terminology.

No worries. I certainly agree that some of the terminology is less than optimal.

Q-reeus said:
Well thankfully I consider to have gained a little increased insight through it all.

I'm glad! :smile:
 
  • #68
Quick note: I have posted a follow-up, "Does Gravity Gravitate: The Sequel", on my PF blog:

https://www.physicsforums.com/blog.php?b=4288

Unfortunately, I ran up against the PF post length limit and still had more to cover, so there will be a second follow-up post, hopefully soon!
 
Last edited by a moderator:
  • #69
One point to add is that plausible SET is derived by variation along with R (Ricci scalar) from matter Lagrangian. The variation of the Lagrangian incorporates metric terms in the SET, so you have metric on both sides. Even for a pure EM SET, you have the metric included in the SET. Thus, the metric is on both sides of the equation.
 
  • #70
PAllen said:
One point to add is that plausible SET is derived by variation along with R (Ricci scalar) from matter Lagrangian. The variation of the Lagrangian incorporates metric terms in the SET, so you have metric on both sides. Even for a pure EM SET, you have the metric included in the SET. Thus, the metric is on both sides of the equation.

Just to be clear, the complete action in question is:

S = \int \left[ \frac{R}{16 \pi} + L_{M} \right] \sqrt{-g} d^4 x

where R is the Ricci scalar, L_{M} is the Lagrangian due to matter fields, and g is the determinant of the metric tensor. The variation of the first term with respect to the metric gives the Einstein tensor, and the variation of the second term gives (minus) the SET. The total variation must be zero, which yields the Einstein Field Equation.

It's true that the variation of the second term with respect to the metric will include the metric. But it includes no *derivatives* of the metric, so it contains no information about the curvature (or even about the connection, which is first derivatives of the metric--curvature is second derivatives).
 
  • #71
PeterDonis said:
Just to be clear, the complete action in question is:

S = \int \left[ \frac{R}{16 \pi} + L_{M} \right] \sqrt{-g} d^4 x

where R is the Ricci scalar, L_{M} is the Lagrangian due to matter fields, and g is the determinant of the metric tensor. The variation of the first term with respect to the metric gives the Einstein tensor, and the variation of the second term gives (minus) the SET. The total variation must be zero, which yields the Einstein Field Equation.

It's true that the variation of the second term with respect to the metric will include the metric. But it includes no *derivatives* of the metric, so it contains no information about the curvature (or even about the connection, which is first derivatives of the metric--curvature is second derivatives).

Is it so simple as that?

y'' = y * g(x)

has very different solutions than:

y'' = g(x)

The metric, which describes aspects of geometry directly, is buried in the source term.
 
  • #72
PAllen said:
y'' = y * g(x)

has very different solutions than:

y'' = g(x)

Yes, that's true. The possible solutions of the EFE are certainly affected by the fact that the metric is contained in the SET. But the fact remains that the equation itself does not have curvature on the RHS, and the interpretation of "does gravity gravitate?" that was under discussion was whether *curvature* is a "source" of further curvature in the EFE. Perhaps there's yet another interpretation of the question "does gravity gravitate?" that would turn on the presence of the metric in the SET. :wink:
 
  • #73
PeterDonis said:
Yes, that's true. The possible solutions of the EFE are certainly affected by the fact that the metric is contained in the SET. But the fact remains that the equation itself does not have curvature on the RHS, and the interpretation of "does gravity gravitate?" that was under discussion was whether *curvature* is a "source" of further curvature in the EFE. Perhaps there's yet another interpretation of the question "does gravity gravitate?" that would turn on the presence of the metric in the SET. :wink:

Some people consider the metric an analog of gravitational potential - the 'field' comes from its derivatives. Then one can say gravitational potential is included in the source term.

I don't know how far one could go with this analogy; I think it is more useful to get at the issue via non-linearity and the observation that SET being the only source of Ricci curvature does not mean (even close) that SET can be directly related to effective gravity at a distance (except in special cases, e.g. where Komar volume integral is valid).
 
  • #74
PAllen said:
Some people consider the metric an analog of gravitational potential - the 'field' comes from its derivatives. Then one can say gravitational potential is included in the source term.

Well, that would be yet another interpretation of "does gravity gravitate?", wouldn't it? :wink:

PAllen said:
SET being the only source of Ricci curvature does not mean (even close) that SET can be directly related to effective gravity at a distance (except in special cases, e.g. where Komar volume integral is valid).

I think this is a good way to look at it, yes.

[Edit: To forestall a potential question from Q-reeus, who remembers me talking in previous threads about the field at a given event being due to nonzero SET somewhere in the past light cone of that event: the words "directly related" in the above are key. Ultimately, wherever there is Weyl curvature, there must have been a nonzero SET "source" somewhere in the past light cone. The Weyl curvature in the Schwarzschild exterior vacuum region around a gravitating body is ultimately due to the nonzero SET inside the body. (And if the "body" is a black hole, the Weyl curvature of the hole is ultimately due to the nonzero SET inside the body that collapsed to form the hole.) But that's only "ultimately"; the connection is indirect, since there may be a lot of "empty" spacetime in between, so to speak, and so the properties of "empty" spacetime--i.e., of solutions of the vacuum EFE--play a role in determining what the Weyl curvature is.]
 
Last edited:
  • #75
PeterDonis said:
Unfortunately, I ran up against the PF post length limit and still had more to cover, so there will be a second follow-up post, hopefully soon!

And now the third (and final) post in the series is up:

https://www.physicsforums.com/blog.php?b=4293
 
Last edited by a moderator:
  • #76
PeterDonis said:
And now the third (and final) post in the series is up:
https://www.physicsforums.com/blog.php?b=4293
Peter - great effort in producing those two well-argued follow-up blogs Does Gravity Gravitate: The Sequel , Does Gravity Gravitate: The Wave
In respect of the first one. Find in difficult to avoid concluding that ADM mass as you have derived it, starting with EFE's and culling out an expression that corresponds to gravitating mass M, there is not here a de facto recognition that curvature explicitly contributes to that M - as directly part of the source and not just modifier of Tab (which √(gtt) is). So my impression is GR is made 'consistent' by way of a rather cunning and circuitous route, to put it diplomatically.
In respect of the second one. The vexed issue of non-localizability has it seems a majority consensus 'yes' (localization of gravitational field energy is impossible). But there are those who say 'no' - that this is not a consistent or http://en.wikipedia.org/wiki/Cooperstock%27s_Energy_Localization_Hypothesis. That article also brings in Feynman's sticky bead argument which you also refer to in that 3rd and final blog in the series. Quite frankly the more I try and make sense of the sticky bead argument, the less sense it seems to make. This is probably an issue for a separate thread, but since it has been used here as justification for energy in GW's, and thus sensibility of ADM mass, shall here briefly outline the problem as I see it. From that Wiki article:
The thought experiment was first described by Feynman (under the pseudonym "Mr. Smith") in 1957, at a conference at Chapel Hill, North Carolina.[2][3] His insight was that a passing gravitational wave should in principle cause a bead on a stick (with the stick parallel to the wave velocity) to slide back and forth, thus heating the bead and the stick by friction. A gravitational wave pulse will stretch spacetime behind the bead, pushing the bead forward; after the wave passes through the bead the stretching will occur in front of the bead, accelerating the bead in the opposite direction. This heating, said Feynman, showed that the wave did indeed impart energy to the bead and stick system, so it must indeed transport energy.
Two basic issues. First, as I understand it a GW involves purely transverse shear deformations of just spatial components of metric (zero dilational component). How can that even in principle allow induced motion of a bead along the propagation axis? Makes no sense imo, even if there is an unstated assumption stick length is long wrt, or at least appreciable fraction of, GW wavelength. Second, even when orienting stick orthogonal to propagation axis, induced motion of bead on stick seems nonsensical. Do not these shear deformations have as analogy the orthogonal stretching and un-stretching of a rubber sheet? Then the stick and bead and anything else gravitationally small existing in this 'rubber sheet' act as just figures drawn on it, hence must co-deform with the rubber. Thus would be undergoing motions (or rather deformations) only relative to an undetectable background flat metric. Hence no detectable relative motion of bead wrt stick, making any kind of local detection or energy absorption impossible in principle. Evidently Eddington adopted the lifelong view that along this or similar line of argument, GW's were merely coordinate artifacts - 'ripples in the coordinates' and thus unphysical. Considered now antiquated thinking, was he wrong?

The only way one could posit relative motion imo is to interpret the metric stretching as giving rise to tidal 'g' accelerations everywhere in the transverse plane. That seems like a geometrical impossibility for plane wave situation - to me only for something like spherically symmetric Schwarzschild geometry would everywhere transverse tidal 'g' make physical sense. But that is always there accompanied by comparably sized radial component too, and diminishes rapidly at large r no matter how strong the proper acceleration of a stationary observer is there (say for super-massive BH). One cannot have in a plane wave (strictly spherical but we are dealing with GW's at very, very large r from source) the necessary diverging radial vectors that apply in SG case. I'm wondering whether Hulse-Taylor binary-pulsar results might actually indicate a non-conservative process - orbital decay purely owing to field retardation effects. Yet another way conservation of energy can fail in GR?
Just when you thought it was all done. :biggrin:
 
Last edited by a moderator:
  • #77
Q-reeus said:
Find in difficult to avoid concluding that ADM mass as you have derived it, starting with EFE's and culling out an expression that corresponds to gravitating mass M, there is not here a de facto recognition that curvature explicitly contributes to that M - as directly part of the source and not just modifier of Tab (which √(gtt) is).

Once again, it depends on what you mean by "source". You are trying to fix one unique meaning for words that don't have one unique meaning. Curvature does not appear in the SET. That's the fact. How you connect that to the word "source" is a matter of terminology, not physics.

Also, don't confuse curvature with the metric. The ADM mass depends on the metric; curvature does not appear in it. Of course if the metric is something other than Minkowski, curvature is present, but that's not the same as curvature explicitly appearing in the ADM integral. It doesn't.

Q-reeus said:
So my impression is GR is made 'consistent' by way of a rather cunning and circuitous route, to put it diplomatically.

By "consistent" here you can only mean "consistent with my intuitions". There's no point in arguing about that. The "route" by which GR is shown to be consistent mathematically is not circuitous at all.

Q-reeus said:
Quite frankly the more I try and make sense of the sticky bead argument, the less sense it seems to make. This is probably an issue for a separate thread

Yes, it probably is, but I'll comment briefly below since it is, as you say, relevant to the question of whether GWs carry energy.

Q-reeus said:
First, as I understand it a GW involves purely transverse shear deformations of just spatial components of metric (zero dilational component).

Yes.

Q-reeus said:
How can that even in principle allow induced motion of a bead along the propagation axis?

It doesn't. It induces motion of a bead *transverse* to the propagation axis. I apologize if that wasn't clear; in the blog post I didn't really describe the scenario in detail (and I'll go back and try to fix that). Feynman's thought experiment had beads strung along a stick that was placed *transverse* to the propagation direction of the GW, so the motion of the beads is induced by the transverse GW oscillations.

[Edit: I see the Wiki article describes this wrong; it says "parallel to the wave velocity". AFAIK Feynman proposed the thought experiment as I have described it just above. But I'll check some sources to confirm.]

Q-reeus said:
Second, even when orienting stick orthogonal to propagation axis, induced motion of bead on stick seems nonsensical. Do not these shear deformations have as analogy the orthogonal stretching and un-stretching of a rubber sheet? Then the stick and bead and anything else gravitationally small existing in this 'rubber sheet' act as just figures drawn on it, hence must co-deform with the rubber.

No, they will deform differently. The beads are not connected to each other, so they can move independently in response to the changes in the metric. The stick is one object with internal forces between its parts, so the relative motion of the parts will be different because of those internal forces. That means there will be relative motion between a given bead and the part of the stick that it was originally in contact with.

Q-reeus said:
Evidently Eddington adopted the lifelong view that along this or similar line of argument, GW's were merely coordinate artifacts - 'ripples in the coordinates' and thus unphysical. Considered now antiquated thinking, was he wrong?

Yes. He wasn't the only one; all those physicists I referred to in the blog post, who thought that GWs couldn't carry energy, made the same kinds of arguments.

Q-reeus said:
The only way one could posit relative motion imo is to interpret the metric stretching as giving rise to tidal 'g' accelerations everywhere in the transverse plane.

Yes, you can look at it this way (another way of stating it would be to say that GWs are oscillations in Weyl curvature), but remember that these "tidal accelerations" *vary in time* as the wave passes. That's the key difference between this case and a static case like the Schwarzschild geometry. The oscillations are quadrupole, so roughly speaking, first there is tidal expansion along the N-S and E-W axes and compression along the NW-SE and NE-SW axes, then there is expansion NW-SE and NE-SW and compression N-S and E-W, and it keeps going back and forth. No longitudinal oscillations at all.
 
Last edited:
  • #78
PeterDonis said:
[Edit: I see the Wiki article describes this wrong; it says "parallel to the wave velocity". AFAIK Feynman proposed the thought experiment as I have described it just above. But I'll check some sources to confirm.]
If there is mutually orthogonal transverse stretch and shrink of metric spatial components, that stretch and shrink must have somewhere to go - nominally transverse spherical wavefronts must have accompanying radial motions. An apt analogy here is shear waves induced in surface of a spherical elastic shell. Only for pure axial shear symmetry can radial deformations be avoided. In 3D GW propagation case it implies a puckered wavefront in general - phase of orthogonal component wavefronts cannot be uniform. Stretch component accompanied by radial phase advance, compression component accompanied by radial phase retardation. Implying a transverse dilational component exists owing to this partial out-of-phase situation, and doubtless harmonics too. And further implies a radial dilational component - maybe this is what Feynman was thinking? Hmm.
No, they will deform differently. The beads are not connected to each other, so they can move independently in response to the changes in the metric. The stick is one object with internal forces between its parts, so the relative motion of the parts will be different because of those internal forces. That means there will be relative motion between a given bead and the part of the stick that it was originally in contact with.
There is imo a serious problem with this. More below.
Yes, you can look at it this way (another way of stating it would be to say that GWs are oscillations in Weyl curvature), but remember that these "tidal accelerations" *vary in time* as the wave passes. That's the key difference between this case and a static case like the Schwarzschild geometry. The oscillations are quadrupole, so roughly speaking, first there is tidal expansion along the N-S and E-W axes and compression along the NW-SE and NE-SW axes, then there is expansion NW-SE and NE-SW and compression N-S and E-W, and it keeps going back and forth. No longitudinal oscillations at all.
Have touched on last bit above - if transverse stretch/contraction occurs in a spherical wavefront, accompanying radial advance/retardation is needed to make geometric sense.
However let's ignore for now the matter of radial motions. Consider as example where two non-spinning neutron stars collide head on. Resulting in predominantly axial quadrupolar ring-down. This should give, in equatorial plane, harmonic GW stretch/compression along polar and azimuthal directions - N-S and E-W. But is this logically consistent with sticky-bead argument? Consider at large r from source we have a circumferential hoop (stick joined onto itself) centred about polar axis and lying in equatorial plane. With a uniformly dispersed array of beads strung out along the hoop. So there are ring-down GW's passing through. Clearly we need consider only the azimuthal E-W GW component. At the point of maximal azimuthal metric change - half-way between maximum dilation and compression, let's suppose your pov is correct and rigidity of hoop prevents any appreciable azimuthal stretch and thus any accompanying radial motion of hoop. Now please explain how each and every sticky bead decides which way to move in this situation - east or west. I'll save you the trouble - by symmetry there can be no such motions.

But this is unfair you may say - a continuous hoop is different to a straight stick. OK then, let's fix that by cutting up the hoop into equal pieces, which at large r, each such 'stick' well approximates to a straight stick. Further, our cutting up introduces a small gap between each 'stick' to allow interference-free radial 'breathing' in and out. Does this make a whit of difference to whether the beads, now strung out on an azimuthal array of sticks, will know to move left or right? Seems clear the answer is no different to before; not at all! Stretch/compression along lines of longitude (polar axis here) logically should follow essentially the same - but not quite. Maximum deformation amplitude along lines of longitude at equator, goes to zero at the poles. And this weak second order stretch deformation gradient implies a translational force on beads - so then motion along a hoop so placed and oriented. But this weak gradient will die off as 1/r2 with distance and thus cannot be considered a true wave property. Also, for a short stick there is essentially the same motion induced as for beads thus no relative motion.

For me this illustrates there is something nonsensical with the sticky-bead argument - it has become unstuck. And with it a famous traditional argument for physically real GW's. Notice we have stuck to the original assumption that only transverse relative bead-stick motions can in principle exist. Two topics now I guess but best to have this thrashed out here as it all ties together.
 
Last edited:
  • #79
Q-reeus said:
If there is mutually orthogonal transverse stretch and shrink of metric spatial components, that stretch and shrink must have somewhere to go - nominally transverse spherical wavefronts must have accompanying radial motions.

If we're modeling them as spherical wavefronts, then we're talking about a more complicated model than the one Feynman was using (AFAIK--see note below), and that I was using. (Furthermore, there are problems with such a model as you are constructing it--see below.) I was modeling the GWs as pure plane waves, with only transverse components. This is the typical way that weak GWs are modeled in GR; it is an approximation, but since gravity is so weak it is a very good one for all cases of any practical interest for direct GW detection (though not, AFAIK, for cases like the binary pulsar, where the evidence of GWs is indirect).

In the case of pure plane waves, there are no tidal changes in the longitudinal direction at all. Put another way, if I have two thin, flat objects both placed transverse to the waves and very close together, and initially at rest relative to each other, there will be no relative motion between them longitudinally; they will simply undergo the same transverse oscillations, but slightly out of phase.

(A note: if there is a single flat object but its thickness is significant relative to the wavelength, there will be shear stress induced in the object because the transverse vibrations at the front surface will be slightly out of phase with those at the back surface. I suppose this could lead to radial relative motion because of internal forces within the object, as long as the net radial momentum was zero. I was not intending to talk about that case since it's more complicated, and we're only trying to answer the question of whether GWs can heat up an object at all, not investigate the details of various ways it could do so.)

(I should also note that I haven't been able to confirm what model Feynman actually had in mind; it's possible that he *was* thinking of a more complicated case than pure plane waves. More to come on that if I can find a reference.)

nick41 said:
There is imo a serious problem with this. More below.

I don't see that you've raised a "serious problem" with the very simple case of a pure transverse plane wave. All I see is that you've constructed several more complicated scenarios and are having trouble seeing how they fit in. We've been here before, I believe. :wink: Can we please stick to the simple case of a pure transverse plane wave first, before dragging in more complicated ones? Do you have any argument for why a pure transverse plane wave can't heat up a stick with beads placed purely transverse to the wave direction?

nick41 said:
Now please explain how each and every sticky bead decides which way to move in this situation - east or west. I'll save you the trouble - by symmetry there can be no such motions.

GWs are quadrupole, so there is no such thing as a true "spherical wavefront" from a GW source. GWs are impossible with perfect spherical symmetry--and only perfect spherical symmetry would support your argument. Approximate spherical symmetry leaves plenty of room for individual beads to be induced to move east or west by local quadrupole oscillations. (As I said above, this case is more complicated than the pure plane wave case because we can see the curvature of the wave fronts; but that doesn't mean it is spherically symmetric.)
 
  • #80
Peter - I have just time for short comment. Any real GW source produces at large r a spherical wavefront - by spherical it is only implied the wave phase is a function of r and not of θ or phi (spherical polar coord's). My arguments are correct re need for radial motions - just try imagine stretching a balloon without it's radius growing! A nonsense. And btw no matter how great the radius from source (so it all looks like plane-wave situation), easy to find that relative phase differential between stretch and compression components is constant. Please give this more thought. Must go.
 
  • #81
Q-reeus said:
Peter - I have just time for short comment. Any real GW source produces at large r a spherical wavefront - by spherical it is only implied the wave phase is a function of r and not of θ or phi (spherical polar coord's).

And this is only true approximately, not exactly. It can't be true exactly for quadrupole radiation. And the fact that it is approximately true is not enough to support your argument.

Q-reeus said:
My arguments are correct re need for radial motions - just try imagine stretching a balloon without it's radius growing! A nonsense.

That's not what pure plane transverse GWs are doing. Can we please stick to the simple case?

Q-reeus said:
And btw no matter how great the radius from source (so it all looks like plane-wave situation), easy to find that relative phase differential between stretch and compression components is constant.

For the *transverse* stretch and compression, yes, it is. So what?
 
Last edited:
  • #82
PeterDonis said:
...That's not what pure plane transverse GWs are doing. Can we please stick to the simple case?...
No. Vital to treat situation for what it is - spherical wave. When I get the chance, will continue this in a new thread. No more on it here please.
 
  • #83
Q-reeus said:
No. Vital to treat situation for what it is - spherical wave.

So you believe you can exhibit a quadrupole wave which has spherical symmetry? This should be interesting. I eagerly await the new thread.
 
  • #84
Q-reeus said:
No. Vital to treat situation for what it is - spherical wave. When I get the chance, will continue this in a new thread. No more on it here please.
In the new thread, be sure to cite some solid evidence that supports your claim that a GW actually is a spherical wave. Good luck.
 
  • #85
PeterDonis said:
And this is only true approximately, not exactly. It can't be true exactly for quadrupole radiation. And the fact that it is approximately true is not enough to support your argument.
I actually disagree here. I don't think that it is even approximately true, at least not globally. If it were approximately true then that would mean that you could get a GW which was spherical plus some small higher order terms. However, the spherical and dipole terms are identically 0. You can write a realistic GW as a quadrupole term plus some small higher order terms, but no lower than quadrupole.

Of course, you can do local approximations, but then there is no advantage to expanding as local spherical waves rather than local plane waves. The symmetry argument doesn't apply, and you add needless complication to your approximation terms without adding accuracy.
 
  • #86
DaleSpam said:
I actually disagree here. I don't think that it is even approximately true, at least not globally. If it were approximately true then that would mean that you could get a GW which was spherical plus some small higher order terms. However, the spherical and dipole terms are identically 0. You can write a realistic GW as a quadrupole term plus some small higher order terms, but no lower than quadrupole.

If you're going to actually try to model the wave fields directly as spherical harmonics, yes, I agree; the l = 0 and l = 1 terms are identically zero.

However, I can see doing a geometric optics approximation where we model the GWs, globally, as expanding spherical wavefronts of "graviton pulses", similar to the way "photon" wavefronts are modeled as spherical in SR as an approximation, even though they're really not (the lowest-order EM radiation is dipole so the spherical term is 0 for that as well). Of course the GW wavelength has to be much, much smaller than the size of the spheres for this to work, i.e., the GWs have to be high frequency. I suspect that the paper Q-reeus linked to about HFGWs was doing something along those lines. But that is still only an approximation.

Furthermore, it's a useless approximation for trying to decide if GWs carry energy, because a "yes" answer to that question is built into the geometric optics approximation in the first place. That approximation assumes that the "gravitons" are massless particles carrying some finite amount of energy and momentum (if they carried zero energy and momentum they would have infinite wavelength, which obviously violates the small-wavelength assumption).

DaleSpam said:
Of course, you can do local approximations, but then there is no advantage to expanding as local spherical waves rather than local plane waves. The symmetry argument doesn't apply, and you add needless complication to your approximation terms without adding accuracy.

Exactly.
 
  • #87
PeterDonis said:
So you believe you can exhibit a quadrupole wave which has spherical symmetry? This should be interesting. I eagerly await the new thread.
Sorry to have to say both yourself and DaleSpam are attacking a straw man in posts #83-86. Did I not make it clear in #78 I was talking about spherical wavefronts? You are both sadly uninformed about common terminology here. Spherical wavefront (often just the term 'spherical wave' is used - without confusion by those in the know) simply means that at large r (i.e. well into radiation zone) wavefronts of constant phase have spherical symmetry. And that much I clarified for you in #80 - so you are both without excuse for attacking this straw man of your own creation. From http://en.wikipedia.org/wiki/Antenna_measurement#Compact_range
The CATR uses a source antenna which radiates a spherical wavefront and one or more secondary reflectors to collimate the radiated spherical wavefront into a planar wavefront within the desired test zone.
(emphasis added)
See "eeweb.poly.edu/faculty/bertoni/docs/04sphericalwaves.pdf" (perhaps you should inform author of gross ignorance in using the term 'spherical wave' in respect of antenna radiation! What an ignoramus!)
"galileo.phys.virginia.edu/classes/312/notes/antenna.pdf"
Although the wave emitted by the oscillating dipole is a spherical wave, it does not have the same intensity in all directions.
(between (4.16) and (4.16')) Gees - yet another ignoramus! Must be crawling with em out there.

Get used to it folks - spherical wave simply refers to phase of wavefront, and need have no bearing on angular dependence of field strength or direction - savvy?! I never once used the term spherically uniform field or monopole field or monopole moment - that all came from inside your heads.
Now, assuming your bonfire for the straw man has burnt out, listen up. Have been feeling my way on this issue - beginning with #76. Some statements made in #78 I now see are wrong (phase differential bit and what flowed from that), but stand by the overall thrust. It needs considerably more refinement and better presentation, and that I intend to do, but hands are tied up at the moment elsewhere. Sufficient to say I'm now sure GW's are a phantom. One more thing. Since you and DaleSpam have not heeded my request to leave it all for now - you might as well make good on that undertaking to provide reference material for Feynman's 'strange' sticky-bead argument that had stick pointing along propagation axis. Have you found one yet?
 
Last edited by a moderator:
  • #88
Q-reeus said:
Get used to it folks - spherical wave simply refers to phase of wavefront, and need have no bearing on angular dependence of field strength or direction - savvy?! I never once used the term spherically uniform field or monopole field or monopole moment - that all came from inside your heads.
Oh, you are correct. I was indeed thinking you were referring to complete spherical symmetry in every aspect of the wave instead of simply a spherical phase distribution. I stand corrected.

Of course, since you didn't intend to imply anything about anything other than the phase then your argument becomes a non sequiter. A GW has more than just phase, so these other components need not be spherically symmetric as your argument requires:
Q-reeus said:
Now please explain how each and every sticky bead decides which way to move in this situation - east or west. I'll save you the trouble - by symmetry there can be no such motions.

I was mistakenly thinking that you were making a valid argument from an incorrect premise, when you were actually making an invalid argument from a correct premise.
 
Last edited:
  • #89
DaleSpam said:
Oh, you are correct. I was indeed thinking you were referring to complete spherical symmetry in every aspect of the wave instead of simply a spherical phase distribution. I stand corrected.
Thanks for at least admitting that - there's hope yet for you DS.
Of course, since you didn't intend to imply anything about anything other than the phase then your argument becomes a non sequiter.
Actually it's that statement that is the non sequiter - more below.
A GW has more than just phase, so these other components need not be spherically symmetric as your argument requires:
Wrong on last bit. My particular argument you presumably are referring to - in last section of #78, does not at all require spherical symmetry of field - merely axial symmetry in equatorial plane. And that was correctly applied.
Q-reeus: "Now please explain how each and every sticky bead decides which way to move in this situation - east or west. I'll save you the trouble - by symmetry there can be no such motions."

I was mistakenly thinking that you were making a valid argument from an incorrect premise, when you were actually making an invalid argument from a correct premise.
Actually it is you hastily making an invalid judgement. What I wrote there is just basic fact and cannot be sensibly denied. Maybe you simply have not grasped what was being said there. Perhaps you have the basic geometry confused. Are you cognizant of the arrangement: A very large circular hoop encircling at large r an axial quadrupole oscillator, with latter's axis of oscillation normal to plane of hoop? Hoop lying in equatorial plane of oscillator. I certainly described it plainly enough as such, but it never fails to amaze me how readily some folks can still misinterpret. If you did understand arrangement, how can you criticize the bit you quoted? It necessarily is true.
 
  • #90
This thread, like the ones before it, has degenerated to the personal. It's closed.

Q-reeus, please do not start another one.
 
Back
Top