Is this a mistake in my textbook's answer about induced voltage question?

  • Thread starter Thread starter mymodded
  • Start date Start date
AI Thread Summary
The discussion centers on a potential mistake in a textbook's solution regarding induced voltage in a solenoid. The original solution omits the number of turns in the solenoid, which the user believes should be included in the calculation. The textbook's final answer is proportional to n^2, while the user argues it should be proportional to n^3. After some clarification, it is acknowledged that the user initially misunderstood the context, confirming that the induced magnetic field in the inner solenoid was correctly addressed. The conversation highlights the importance of accurately accounting for the number of turns in solenoid calculations.
mymodded
Messages
29
Reaction score
7
Homework Statement
A long solenoid with cross-sectional area A_1 surrounds another long solenoid with cross-sectional area A_2 < A_1 and resistance R. Both solenoids have the same length and the same number of turns. A current given by ##i=i_{0}cos(\omega t)## is flowing through the outer solenoid. Find an expression for the magnetic field in the inner solenoid due to the induced current.
Relevant Equations
##\Delta V_{ind} = -\frac{d\Phi}{dt}##
##B_{solenoid} = \mu_{0} n i##
My textbook solved it by first finding the induced voltage in the inner solenoid but they found it by saying ##-\Delta V_{ind} = A_{2} \frac{d\Phi}{dt}##, but they did not include the number of turns in the solenoid, but I think they should have done that. their final answer is ##\Large \frac{\mu_{0}^{2} n^{2} A_{2} i_{0} \omega sin(\omega t)}{R}## but I think the right answer should be $$\frac{\mu_{0}^{2} n^{3} l A_{2} i_{0} \omega sin(\omega t)}{R}$$
 
Last edited:
Physics news on Phys.org
mymodded said:
their final answer is ##\Large \frac{\mu_{0}^{2} n^{2} A_{2} i_{0} \omega sin(\omega t)}{R}## but I think the right answer should be $$\frac{\mu_{0}^{2} n^{3} l A_{2} i_{0} \omega sin(\omega t)}{R}$$
The answer should be proportional to ##n^2##, not ##n^3##. Show the details of your calculation so we can help you identify any mistakes.

The answer that was provided to you has some typographical errors, but the ##n^2## is correct.

[EDIT: Nevermind, I was thinking of finding the current in the inner solenoid. You are correct for the induced magnetic field in the inner solenoid.]
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top