Is This a New Expression for the Beta Function?

AI Thread Summary
A new expression for the Beta Function has been proposed, defined as B(x,y) = (Γ(x)/x) * (∑(k=1 to y) (Γ(x+y-k)/Γ(y-k+1)))⁻¹, applicable for non-negative integer pairs of x and y. The formula bears resemblance to the traditional Beta Function representation, B(x,y) = (x-1)!(y-1)!/(x+y-1)!. The discussion confirms that y is indeed the upper bound of the summation in the new expression. The community is invited to verify if this expression is previously known or truly novel. The exploration of this potential new formulation of the Beta Function is deemed interesting.
PhysicsRock
Messages
121
Reaction score
19
So, I've recently played around a little with the Gamma Function and eventually managed to find an expression for the Beta Function I have not yet seen. So I'm asking you guys, if you've ever seen this expression somewhere or if this is a new thing. Would be cool if it was, so here's the formula:
$$
B(x,y) = \frac{\Gamma(x)}{x} \cdot \left( \sum_{k=1}^{y} \frac{\Gamma(x+y-k)}{\Gamma(y-k+1)} \right)^{-1}
$$

Obviously, this only works for non-negative integer pairs of ##x## and ##y##. Still pretty interesting I think.
 
Mathematics news on Phys.org
Sure you have ##y## as upper bound of the sum?

Anyway, it looks very similar to ##B(x,y)=\dfrac{(x-1)!(y-1)!}{(x+y-1)!}##
 
fresh_42 said:
Sure you have ##y## as upper bound of the sum?

Anyway, it looks very similar to ##B(x,y)=\dfrac{(x-1)!(y-1)!}{(x+y-1)!}##
Yes, ##y## is definitely the upper bound.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top