Is This a New Expression for the Beta Function?

Click For Summary
A new expression for the Beta Function has been proposed, defined as B(x,y) = (Γ(x)/x) * (∑(k=1 to y) (Γ(x+y-k)/Γ(y-k+1)))⁻¹, applicable for non-negative integer pairs of x and y. The formula bears resemblance to the traditional Beta Function representation, B(x,y) = (x-1)!(y-1)!/(x+y-1)!. The discussion confirms that y is indeed the upper bound of the summation in the new expression. The community is invited to verify if this expression is previously known or truly novel. The exploration of this potential new formulation of the Beta Function is deemed interesting.
PhysicsRock
Messages
121
Reaction score
19
So, I've recently played around a little with the Gamma Function and eventually managed to find an expression for the Beta Function I have not yet seen. So I'm asking you guys, if you've ever seen this expression somewhere or if this is a new thing. Would be cool if it was, so here's the formula:
$$
B(x,y) = \frac{\Gamma(x)}{x} \cdot \left( \sum_{k=1}^{y} \frac{\Gamma(x+y-k)}{\Gamma(y-k+1)} \right)^{-1}
$$

Obviously, this only works for non-negative integer pairs of ##x## and ##y##. Still pretty interesting I think.
 
Mathematics news on Phys.org
Sure you have ##y## as upper bound of the sum?

Anyway, it looks very similar to ##B(x,y)=\dfrac{(x-1)!(y-1)!}{(x+y-1)!}##
 
fresh_42 said:
Sure you have ##y## as upper bound of the sum?

Anyway, it looks very similar to ##B(x,y)=\dfrac{(x-1)!(y-1)!}{(x+y-1)!}##
Yes, ##y## is definitely the upper bound.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
0
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K