Is This Calculation of the Laplace Transform Correct?

Click For Summary
SUMMARY

The calculation of the Laplace Transform for the function $\mathscr{L}[2\sin(bt)\sinh(bt)]$ is confirmed to be correct. The transformation utilizes the identity $\sinh(bt) = \frac{e^{bt}-e^{-bt}}{2}$, leading to the expression $\frac{4b^2s}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$. To find the inverse Laplace Transform, the results indicate that $\mathscr{L}^{-1} \{ \frac{b}{(s-b)^2+b^2} - \frac{b}{(s+b)^2+b^2} \}$ simplifies to $2 \sin(bt) \sinh(bt)$, confirming the original function.

PREREQUISITES
  • Understanding of Laplace Transforms
  • Familiarity with hyperbolic functions, specifically $\sinh(bt)$
  • Knowledge of inverse Laplace Transform techniques
  • Basic algebraic manipulation of rational functions
NEXT STEPS
  • Study the properties of Laplace Transforms in detail
  • Learn about hyperbolic functions and their applications in transforms
  • Explore techniques for calculating inverse Laplace Transforms
  • Practice solving differential equations using Laplace Transforms
USEFUL FOR

Students, mathematicians, and engineers who are working with differential equations and require a solid understanding of Laplace Transforms and their applications in solving complex problems.

Drain Brain
Messages
143
Reaction score
0


please check my work here

$\mathscr{L}[2\sin(bt)\sinh(bt)]$

I know that $\sinh(bt) = \frac{e^{bt}-e^{-bt}}{2}$$\mathscr{L}[2\sin(bt)\left(\frac{e^{bt}-e^{-bt}}{2}\right)]$

$\mathscr{L}[e^{bt}\sin(bt)-e^{-bt}\sin(bt)]$$\mathscr{L}[e^{bt}\sin(bt)]-\mathscr{L}[e^{-bt}\sin(bt)]$$\frac{b}{s^2+b^2}|_{s-->s-b} - \frac{b}{s^2+b^2}|_{s-->s+b}$$\frac{b}{(s-b)^2+b^2}-\frac{b}{(s+b)^2+b^2}$$\frac{b}{(s^2-2bs+2b^2)}-\frac{b}{(s^2+2bs+2b^2)}$
$\frac{b(s^2+2bs+2b^2)-b(s^2-2bs+2b^2)}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$

$\frac{4b^2s}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$---->>>final answer please check this.

if my answer is correct how Am I going to get the inverse laplace of it?

regards and thanks!
 
Physics news on Phys.org
Drain Brain said:
please check my work here

$\mathscr{L}[2\sin(bt)\sinh(bt)]$

I know that $\sinh(bt) = \frac{e^{bt}-e^{-bt}}{2}$$\mathscr{L}[2\sin(bt)\left(\frac{e^{bt}-e^{-bt}}{2}\right)]$

$\mathscr{L}[e^{bt}\sin(bt)-e^{-bt}\sin(bt)]$$\mathscr{L}[e^{bt}\sin(bt)]-\mathscr{L}[e^{-bt}\sin(bt)]$$\frac{b}{s^2+b^2}|_{s-->s-b} - \frac{b}{s^2+b^2}|_{s-->s+b}$$\frac{b}{(s-b)^2+b^2}-\frac{b}{(s+b)^2+b^2}$$\frac{b}{(s^2-2bs+2b^2)}-\frac{b}{(s^2+2bs+2b^2)}$
$\frac{b(s^2+2bs+2b^2)-b(s^2-2bs+2b^2)}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$

$\frac{4b^2s}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$---->>>final answer please check this.

if my answer is correct how Am I going to get the inverse laplace of it?

regards and thanks!

Yes, it is right ! (Yes)

In order to get the inverse Laplace of it, use this:

$$F(s)=\frac{b}{(s-a)^2+b^2}$$

$$f(t)=\mathscr{L}^{-1} \{ F(s) \} =e^{at} \sin (bt)$$

  • $F(s)=\frac{b}{(s-b)^2+b^2}$

    $$f(t)=\mathscr{L}^{-1} \{ F(s) \} =e^{bt} \sin (bt)$$
  • $F(s)=\frac{b}{(s+b)^2+b^2}$

    $$f(t)=\mathscr{L}^{-1} \{ F(s) \}=e^{-bt} \sin (bt)$$

So, we have:

$$\mathscr{L}^{-1} \{ \frac{b}{(s-b)^2+b^2} - \frac{b}{(s+b)^2+b^2} \}=e^{bt} \sin (bt)-e^{-bt} \sin (bt)= \sin (bt) (e^{bt}-e^{-bt}) \\ =2 \sin (bt) \left ( \frac{e^{bt}-e^{-bt}}{2} \right )=2 \sin (bt) \sinh (bt)$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
30
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K