MHB Is This Calculation of the Laplace Transform Correct?

Click For Summary
The calculation of the Laplace transform for the function 2sin(bt)sinh(bt) is confirmed to be correct, resulting in the expression 4b²s/((s²-2bs+2b²)(s²+2bs+2b²)). To find the inverse Laplace transform, the method involves recognizing the forms of F(s) related to the sine function and exponential terms. Specifically, the inverse transforms for F(s) = b/((s-a)²+b²) yield e^(at)sin(bt). The final result shows that the inverse Laplace of the derived expression simplifies back to the original function, confirming the calculation's accuracy. This demonstrates the consistency of Laplace transforms and their inverses in handling such functions.
Drain Brain
Messages
143
Reaction score
0


please check my work here

$\mathscr{L}[2\sin(bt)\sinh(bt)]$

I know that $\sinh(bt) = \frac{e^{bt}-e^{-bt}}{2}$$\mathscr{L}[2\sin(bt)\left(\frac{e^{bt}-e^{-bt}}{2}\right)]$

$\mathscr{L}[e^{bt}\sin(bt)-e^{-bt}\sin(bt)]$$\mathscr{L}[e^{bt}\sin(bt)]-\mathscr{L}[e^{-bt}\sin(bt)]$$\frac{b}{s^2+b^2}|_{s-->s-b} - \frac{b}{s^2+b^2}|_{s-->s+b}$$\frac{b}{(s-b)^2+b^2}-\frac{b}{(s+b)^2+b^2}$$\frac{b}{(s^2-2bs+2b^2)}-\frac{b}{(s^2+2bs+2b^2)}$
$\frac{b(s^2+2bs+2b^2)-b(s^2-2bs+2b^2)}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$

$\frac{4b^2s}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$---->>>final answer please check this.

if my answer is correct how Am I going to get the inverse laplace of it?

regards and thanks!
 
Physics news on Phys.org
Drain Brain said:
please check my work here

$\mathscr{L}[2\sin(bt)\sinh(bt)]$

I know that $\sinh(bt) = \frac{e^{bt}-e^{-bt}}{2}$$\mathscr{L}[2\sin(bt)\left(\frac{e^{bt}-e^{-bt}}{2}\right)]$

$\mathscr{L}[e^{bt}\sin(bt)-e^{-bt}\sin(bt)]$$\mathscr{L}[e^{bt}\sin(bt)]-\mathscr{L}[e^{-bt}\sin(bt)]$$\frac{b}{s^2+b^2}|_{s-->s-b} - \frac{b}{s^2+b^2}|_{s-->s+b}$$\frac{b}{(s-b)^2+b^2}-\frac{b}{(s+b)^2+b^2}$$\frac{b}{(s^2-2bs+2b^2)}-\frac{b}{(s^2+2bs+2b^2)}$
$\frac{b(s^2+2bs+2b^2)-b(s^2-2bs+2b^2)}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$

$\frac{4b^2s}{(s^2-2bs+2b^2)(s^2+2bs+2b^2)}$---->>>final answer please check this.

if my answer is correct how Am I going to get the inverse laplace of it?

regards and thanks!

Yes, it is right ! (Yes)

In order to get the inverse Laplace of it, use this:

$$F(s)=\frac{b}{(s-a)^2+b^2}$$

$$f(t)=\mathscr{L}^{-1} \{ F(s) \} =e^{at} \sin (bt)$$

  • $F(s)=\frac{b}{(s-b)^2+b^2}$

    $$f(t)=\mathscr{L}^{-1} \{ F(s) \} =e^{bt} \sin (bt)$$
  • $F(s)=\frac{b}{(s+b)^2+b^2}$

    $$f(t)=\mathscr{L}^{-1} \{ F(s) \}=e^{-bt} \sin (bt)$$

So, we have:

$$\mathscr{L}^{-1} \{ \frac{b}{(s-b)^2+b^2} - \frac{b}{(s+b)^2+b^2} \}=e^{bt} \sin (bt)-e^{-bt} \sin (bt)= \sin (bt) (e^{bt}-e^{-bt}) \\ =2 \sin (bt) \left ( \frac{e^{bt}-e^{-bt}}{2} \right )=2 \sin (bt) \sinh (bt)$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
30
Views
2K
Replies
8
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K