Is this equation involving the acceleration of gravity correct?

  • Thread starter Huzaifa
  • Start date
  • #1
Huzaifa
40
2
Homework Statement:
Is this equation correct: $$g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8ms^{-2}$$?
Relevant Equations:
##g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8ms^{-2}##
$$\begin{aligned}v=u+at\\ \Rightarrow v=gt\\ \Rightarrow g=\dfrac{v}{t} \cdots (1)\end{aligned}$$
$$\begin{aligned}s=ut+\dfrac{1}{2}at^{2}\\ \Rightarrow s=\dfrac{1}{2}gt^{2}\\ \Rightarrow g=\dfrac{2s}{t^{2}}\cdots (2)\end{aligned}$$
$$\begin{aligned}s=vt-\dfrac{1}{2}at^{2}\\ \Rightarrow s-vt=-\dfrac{1}{2}at^{2}\\ \Rightarrow g=\dfrac{2\left( vt-s\right) }{t^{2}} \cdots (3)\end{aligned}$$
$$\begin{aligned}v^{2}-u^{2}=2as\\ \Rightarrow v^{2}=2as\\ \Rightarrow g=\dfrac{v^{2}}{2s} \cdots (4)\end{aligned}$$
$$g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8\ \mathrm{m s^{-2}}$$
 

Answers and Replies

  • #2
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2022 Award
24,046
15,753
What's the question precisely?
 
  • Like
Likes Steve4Physics
  • #3
SammyS
Staff Emeritus
Science Advisor
Homework Helper
Gold Member
11,745
1,329
Homework Statement:: Is this equation correct: $$g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8ms^{-2}$$?
Relevant Equations:: ##g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8ms^{-2}##

$$\begin{aligned}v=u+at\\ \Rightarrow v=gt\\ \Rightarrow g=\dfrac{v}{t} \cdots (1)\end{aligned}$$
$$\begin{aligned}s=ut+\dfrac{1}{2}at^{2}\\ \Rightarrow s=\dfrac{1}{2}gt^{2}\\ \Rightarrow g=\dfrac{2s}{t^{2}}\cdots (2)\end{aligned}$$
$$\begin{aligned}s=vt-\dfrac{1}{2}at^{2}\\ \Rightarrow s-vt=-\dfrac{1}{2}at^{2}\\ \Rightarrow g=\dfrac{2\left( vt-s\right) }{t^{2}} \cdots (3)\end{aligned}$$
$$\begin{aligned}v^{2}-u^{2}=2as\\ \Rightarrow v^{2}=2as\\ \Rightarrow g=\dfrac{v^{2}}{2s} \cdots (4)\end{aligned}$$
$$g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8\ \mathrm{m s^{-2}}$$
What you have is multiple equations.

You need to describe the overall situation. Also define precisely what each variable means.

Of course, answer the question asked by @PeroK. .
 
  • Like
Likes Steve4Physics
  • #4
Huzaifa
40
2
You need to describe the overall situation. Also define precisely what each variable means.
The overall situation is constant or uniform acceleration. Here, s = displacement, u = initial velocity, v = final velocity, a = acceleration, t = time. These are equations of motion.
 
  • #5
robphy
Science Advisor
Homework Helper
Insights Author
Gold Member
6,671
2,039
None of the numbered equations [except maybe (3)] are generally true.
Each is true in some special [so far unstated] cases
 
  • Like
Likes Steve4Physics
  • #6
Steve4Physics
Homework Helper
Gold Member
2022 Award
1,658
1,524
Hi @Huzaifa. You seem to be making a number of unstated assunptions, e.g.
- motion is in the vertical direction only, with gravity the only force;
- initial velocity (u) is zero, so you are only considering objects released from rest at t=0.

But of course I'm just guessing, as you haven't yet answered @PeroK's question (Post #2).
 

Suggested for: Is this equation involving the acceleration of gravity correct?

Replies
4
Views
151
Replies
32
Views
440
Replies
7
Views
473
Replies
42
Views
1K
Replies
2
Views
641
Replies
39
Views
893
Replies
3
Views
380
  • Last Post
Replies
29
Views
1K
  • Last Post
Replies
11
Views
830
Replies
14
Views
481
Top