MHB Is this integral substitution approach correct for evaluating the integral I?

Click For Summary
The integral I is evaluated using the substitution \( u = y - 2 \), transforming the limits from 2 to 6 into 0 to 4. The integral simplifies to \( I = \int_{0}^{4} \frac{u+2}{\sqrt{u}} \, du \), which is further broken down into two parts: \( \int_{0}^{4} u^{1/2} \, du \) and \( 2 \int_{0}^{4} u^{-1/2} \, du \). After performing the calculations, the result confirms that \( I = \frac{40}{3} \). The substitution approach and subsequent calculations are deemed correct. The method effectively demonstrates the evaluation of the integral.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{S6.7.r.44}$
$$\displaystyle
I=\int_{2}^{6}\frac{y}{\sqrt{y-2}} \,dy = \frac{40}{3}$$
$$
\begin{align}
u&=y-2 &y&=u+2 \\
du&=dy
\end{align}$$
then
$$\displaystyle
I=\int_{0}^{4}\frac{u+2}{\sqrt{u}} \, du
=\int_{0}^{4}{u}^{1/2} \, du + 2\int_{0}^{4} {u}^{-1/2} \, du$$
Just seeing if going in right direction...
 
Last edited:
Physics news on Phys.org
Looks good.
 
$\large{S6.7.r.44}$
$$\displaystyle
I=\int_{2}^{6}\frac{y}{\sqrt{y-2}} \,dy = \frac{40}{3}$$
$$
\begin{align}
u&=y-2 &y&=u+2 \\
du&=dy
\end{align}$$
then
$$\displaystyle
I=\int_{0}^{4}\frac{u+2}{\sqrt{u}} \, du
=\int_{0}^{4}{u}^{1/2} \, du
+ 2\int_{0}^{4} {u}^{-1/2} \, du
=\frac{ \sqrt{2}u(u+4)}{4 } \\
\text{back subst and calc gives} \\
I=\frac{40}{3}$$
 
Last edited:
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
895
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K