Undergrad Is this proof of cp - cv correct

  • Thread starter Thread starter planck999
  • Start date Start date
  • Tags Tags
    Cv Proof
Click For Summary
The discussion focuses on the derivation of the relationship between specific heats, cp and cv, and the correct application of thermodynamic equations. It highlights the error in assuming that the change in volume (dV) is zero when calculating dU/dT. The correct starting point for the derivation is emphasized, using the equations for internal energy (dU) and enthalpy (dH). The importance of accurately applying the partial derivatives in thermodynamic relationships is stressed. Overall, the conversation aims to clarify the proper methodology for deriving cp - cv.
planck999
Messages
23
Reaction score
7
cp=(dU/dT)P+P(dv/dT)P
cv=(dU/dT)V
cp-cv=(dU/dT)P+P(dv/dT)P- (dU/dT)V=(dU/dV)T(dV/dT)P+P(dv/dT)P- (dU/dV)T(dV/dT)V
since dV is zero (dU/dV)T(dV/dT)V is zero.
Hence
cp-cv=(dU/dV)T(dV/dT)P+P(dv/dT)P

I expanded both dU/dT and since one of them has no change in volume it is zero. is it acceptable? Did I multiply and divide both expressions by dV?
 
Science news on Phys.org
This is done incorrectly. Start with $$dU=C_vdT-\left[P-T\left(\frac{\partial P}{\partial T}\right)_V\right]dV$$and $$dH=dU+d(PV)=C_PdT+\left[V-T\left(\frac{\partial V}{\partial T}\right)_P\right]dP$$
 
Chestermiller said:
This is done incorrectly. Start with $$dU=C_vdT-\left[P-T\left(\frac{\partial P}{\partial T}\right)_V\right]dV$$and $$dH=dU+d(PV)=C_PdT+\left[V-T\left(\frac{\partial V}{\partial T}\right)_P\right]dP$$
Thanks
Chestermiller said:
This is done incorrectly. Start with $$dU=C_vdT-\left[P-T\left(\frac{\partial P}{\partial T}\right)_V\right]dV$$and $$dH=dU+d(PV)=C_PdT+\left[V-T\left(\frac{\partial V}{\partial T}\right)_P\right]dP$$
 
Thread 'Can somebody explain this: Planck's Law in action'
Plotted is the Irradiance over Wavelength. Please check for logarithmic scaling. As you can see, there are 4 curves. Blue AM 0 as measured yellow Planck for 5777 K green Planck for, 5777 K after free space expansion red Planck for 1.000.000 K To me the idea of a gamma-Ray-source on earth, below the magnetic field, which protects life on earth from solar radiation, in an intensity, which is way way way outer hand, makes no sense to me. If they really get these high temperatures realized in...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K