Is This Trig Substitution Correct for This Integral?

Click For Summary
SUMMARY

The forum discussion focuses on the correctness of the trigonometric substitution for the integral $$\int \frac{1}{x\sqrt{x^2 + 16}} \,dx$$ using the substitution $x = 4 \tan \theta$. The substitution leads to the integral $$\frac{1}{4}\int \frac{1}{\sin \theta} \,d\theta$$, which evaluates to $$\frac{1}{4} \ln |\sin \theta| + C$$. The discussion further confirms that this is equivalent to $$\frac{1}{4} \ln |\frac{x}{\sqrt{x^2 + 16}}| + C$$, validating the substitution method and its results.

PREREQUISITES
  • Understanding of trigonometric identities and functions, specifically sine and tangent.
  • Familiarity with integration techniques, particularly trigonometric substitution.
  • Knowledge of logarithmic properties and their applications in calculus.
  • Basic understanding of the Pythagorean theorem as it relates to trigonometric functions.
NEXT STEPS
  • Study advanced integration techniques, including trigonometric and hyperbolic substitutions.
  • Learn about the properties of logarithmic functions in calculus.
  • Explore the application of the Pythagorean theorem in solving integrals involving trigonometric functions.
  • Investigate the use of partial fractions in integration, particularly for rational functions.
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators looking for examples of trigonometric substitution in integrals.

tmt1
Messages
230
Reaction score
0
$$\int_{}^{} \frac{1}{x\sqrt{x^2 + 16}} \,dx$$

I can set $x = 4 tan\theta$. Thus $dx = 4 sec^2 \theta d\theta$

So, plug this into the first equation:

$$\int_{}^{} \frac{4 sec^2 \theta }{4 tan\theta \sqrt{16 tan^2\theta + 16}} \,d\theta$$

Then,

$$\int_{}^{} \frac{ sec^2 \theta }{4 tan\theta sec\theta} \,d\theta$$

then:

$$\frac{1}{4}\int_{}^{} \frac{ sec \theta }{ tan\theta} \,d\theta$$

I can simplify this to:

$$\frac{1}{4}\int_{}^{} \frac{ 1}{ sin\theta} \,d\theta$$

which evaluates evaluates to

$$\frac{1}{4} ln|sin \theta| + C$$

I have $x = 4 tan\theta$, therefore $\frac{x}{4} = tan\theta$.

$tan\theta = \frac{opposite}{adjacent}$ and $sin\theta = \frac{opposite}{hypotenuse}$.

So, given $\frac{x}{4} = tan\theta$, then $opposite = x$ and $adjacent = 4$, and using the pythagorean theorem, $hypotenuse = \sqrt{x^2 + 16}$.

Plugging that into $sin\theta = \frac{opposite}{hypotenuse}$, $sin\theta = \frac{x}{\sqrt{x^2 + 16}}$, therefore

$$\frac{1}{4} ln|sin \theta| + C$$

is the same as

$$\frac{1}{4} ln|\frac{x}{\sqrt{x^2 + 16}}| + C$$

Is this right?
 
Physics news on Phys.org
I'm with you up to this point:

$$I=\frac{1}{4}\int \frac{1}{\sin(\theta)}\,d\theta$$

However, you next state:

$$I=\frac{1}{4}\ln\left|\sin(\theta)\right|+C$$

If this is correct, and if we differentiate $I$ w.r.t $\theta$, we should get:

$$\frac{1}{4\sin(\theta)}$$

Do we?
 
tmt said:
$$\int_{}^{} \frac{1}{x\sqrt{x^2 + 16}} \,dx$$

I can set $x = 4 tan\theta$. Thus $dx = 4 sec^2 \theta d\theta$

So, plug this into the first equation:

$$\int_{}^{} \frac{4 sec^2 \theta }{4 tan\theta \sqrt{16 tan^2\theta + 16}} \,d\theta$$

Then,

$$\int_{}^{} \frac{ sec^2 \theta }{4 tan\theta sec\theta} \,d\theta$$

then:

$$\frac{1}{4}\int_{}^{} \frac{ sec \theta }{ tan\theta} \,d\theta$$

I can simplify this to:

$$\frac{1}{4}\int_{}^{} \frac{ 1}{ sin\theta} \,d\theta$$

which evaluates evaluates to

$$\frac{1}{4} ln|sin \theta| + C$$

I have $x = 4 tan\theta$, therefore $\frac{x}{4} = tan\theta$.

$tan\theta = \frac{opposite}{adjacent}$ and $sin\theta = \frac{opposite}{hypotenuse}$.

So, given $\frac{x}{4} = tan\theta$, then $opposite = x$ and $adjacent = 4$, and using the pythagorean theorem, $hypotenuse = \sqrt{x^2 + 16}$.

Plugging that into $sin\theta = \frac{opposite}{hypotenuse}$, $sin\theta = \frac{x}{\sqrt{x^2 + 16}}$, therefore

$$\frac{1}{4} ln|sin \theta| + C$$

is the same as

$$\frac{1}{4} ln|\frac{x}{\sqrt{x^2 + 16}}| + C$$

Is this right?

$\displaystyle \begin{align*} \int{ \frac{1}{x\,\sqrt{x^2 + 16}} \,\mathrm{d}x } &= \int{ \frac{2\,x}{2\,x^2\,\sqrt{ x^2 + 16 }} \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = x^2 + 16 \implies \mathrm{d}u = 2\,x\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{2\,x}{2\,x^2\,\sqrt{x^2 + 16}} \,\mathrm{d}x } &= \int{ \frac{1}{2\,\left( u - 16 \right) \, \sqrt{ u }} \,\mathrm{d}u } \\ &= \int{ \frac{1}{2\,\left[ \left( \sqrt{u} \right) ^2 - 16 \right] \, \sqrt{u}} \,\mathrm{d}u } \end{align*}$

Let $\displaystyle \begin{align*} v = \sqrt{u} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{1}{2\,\left[ \left( \sqrt{u} \right) ^2 - 16 \right] \,\sqrt{u} } \,\mathrm{d}u } &= \int{ \frac{1}{v^2 - 16}\,\mathrm{d}v } \\ &= \int{ \frac{1}{\left( v - 4 \right) \left( v + 4 \right) } \,\mathrm{d}v } \end{align*}$

Applying Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{v - 4} + \frac{B}{v + 4} &\equiv \frac{1}{ \left( v - 4 \right) \left( v + 4 \right) } \\ A\,\left( v + 4 \right) + B \,\left( v - 4 \right) &\equiv 1 \end{align*}$

Let $\displaystyle \begin{align*} v = 4 \end{align*}$ to find $\displaystyle \begin{align*} 8\,A = 1 \implies A = \frac{1}{8} \end{align*}$.

Let $\displaystyle \begin{align*} v = -4 \end{align*}$ to find $\displaystyle \begin{align*} -8\,B = 1 \implies B = -\frac{1}{8} \end{align*}$. Then

$\displaystyle \begin{align*} \int{ \frac{1}{\left( v - 4 \right) \left( v + 4 \right) } \,\mathrm{d}v } &= \frac{1}{8} \int{ \left( \frac{1}{v - 4} - \frac{1}{v + 4} \right) \,\mathrm{d}v } \\ &= \frac{1}{8} \, \left( \ln{ \left| v - 4 \right| } - \ln{ \left| v + 4 \right| } \right) + C \\ &= \frac{1}{8} \ln{ \left| \frac{v - 4}{v + 4} \right| } + C \\ &= \frac{1}{8} \ln{ \left| \frac{\sqrt{u} - 4}{\sqrt{u} + 4} \right| } + C \\ &= \frac{1}{8} \ln{ \left| \frac{\sqrt{x^2 + 16} - 4}{\sqrt{x^2 + 16} + 4} \right| } + C \end{align*}$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K