MHB John's Calculus Integration w/ Simpson's Rule

AI Thread Summary
The discussion focuses on using Simpson's Rule to approximate the work required to pump water from a container formed by rotating the curve y = tan−1(x) around the y-axis, specifically between x = 0 and x = 1. The work is calculated by integrating the gravitational potential energy of cylindrical slices of water, leading to the formula W = πgρ∫tan²(y)(π/4 - y) dy. After applying Simpson's Rule with n = 6, the approximate work is found to be around 1172.61 J, compared to the exact value of approximately 1174.5 J. This demonstrates the effectiveness of numerical integration methods in solving calculus problems involving physical applications.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus Integration Problem?

y = tan−1 x between x = 0 and x = 1 is rotated around the y-axis to form a container. The container is filled with water. Use n = 6 subintervals and Simpson's rule to approximate the work required to pump all of the water out over the side of the container. Give your answer in decimal form.
(Distance is measured in meters, the density of water is 1000 kg/m3, and use 9.8 m/s2 for g.)

I know that I should use cylindrical shells as it is rotated by the y-axis. But beyond that I' am having trouble setting up the integral and evaluating it with Simpson's.

Thanks for the help in advance!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello John,

If you were trying to compute the volume of the resulting tank, then either the shell or disk method would be appropriate, but we are computing the work done to empty the tank, so we want to decompose the volume into disks, since each disk will have all parts at the same gravitational potential energy.

Let's first take a look at a cross-section of the tank through the axis of symmetry:

View attachment 1153

The radius $r$ of an arbitrary slice I have drawn in red and the distance $d$ through which it must be lifted is drawn in green. We know the amount of work required to lift this slice is the product of the applied force and the distance over which this force is applied, hence:

$$dW=Fd$$

Now, the applied force is simply the weight of the slice:

$$F=mg$$

and the mass of the slice is the product of its mass density $\rho$ and it volume $V$:

$$m=\rho V$$

and of course the volume of the slice is:

$$V=\pi r^2\,dy$$

where the radius of the slice is:

$$r=x=\tan(y)$$

Now, putting this together, we find:

$$dW=Fd=(mg)\left(\frac{\pi}{4}-y \right)=(g\rho V)\left(\frac{\pi}{4}-y \right)=g\rho\left(\pi r^2\,dy \right)\left(\frac{\pi}{4}-y \right)=\pi g\rho\tan^2(y)\left(\frac{\pi}{4}-y \right)\,dy$$

Summing up all the elements of work, we obtain:

$$W=\pi g\rho\int_0^{\frac{\pi}{4}}\tan^2(y)\left( \frac{\pi}{4}-y \right)\,dy$$

Applying Simpson's Rule with $n=6$ on the integral, where:

$$f(y)=\tan^2(y)\left( \frac{\pi}{4}-y \right)$$

and:

$$y_k=\frac{\frac{\pi}{4}-0}{6}k=\frac{\pi}{24}k$$ with $$k\in\{0,1,2,3,4,5,6\}$$

we find:

$$S_6=\frac{\frac{\pi}{4}-0}{3(6)}\left[f\left(y_0 \right)+4f\left(y_1 \right)+2f\left(y_2 \right)+4f\left(y_3 \right)+2f\left(y_4 \right)+4f\left(y_5 \right)+f\left(y_6 \right) \right]$$

$$S_6=\frac{\pi}{72}\left[f\left(y_0 \right)+4f\left(y_1 \right)+2f\left(y_2 \right)+4f\left(y_3 \right)+2f\left(y_4 \right)+4f\left(y_5 \right)+f\left(y_6 \right) \right]$$

$$f\left(y_0 \right)=f\left(\frac{\pi}{24}\cdot0 \right)=f(0)=\tan^2(0)\left( \frac{\pi}{4}-0 \right)=0$$

$$4f\left(y_1 \right)=4f\left(\frac{\pi}{24}\cdot1 \right)=4f\left(\frac{\pi}{24} \right)=4\tan^2\left(\frac{\pi}{24} \right)\left( \frac{\pi}{4}-\frac{\pi}{24} \right)\approx0.045376065047798$$

$$2f\left(y_2 \right)=2f\left(\frac{\pi}{24}\cdot2 \right)=2f\left(\frac{\pi}{12} \right)=2\tan^2\left(\frac{\pi}{12} \right)\left( \frac{\pi}{4}-\frac{\pi}{12} \right)\approx0.075185401439313$$

$$4f\left(y_3 \right)=4f\left(\frac{\pi}{24}\cdot3 \right)=4f\left(\frac{\pi}{8} \right)=4\tan^2\left(\frac{\pi}{8} \right)\left( \frac{\pi}{4}-\frac{\pi}{8} \right)\approx0.269506042226324$$

$$2f\left(y_4 \right)=2f\left(\frac{\pi}{24}\cdot4 \right)=2f\left(\frac{\pi}{6} \right)=2\tan^2\left(\frac{\pi}{6} \right)\left( \frac{\pi}{4}-\frac{\pi}{6} \right)\approx0.174532925199433$$

$$4f\left(y_5 \right)=2f\left(\frac{\pi}{24}\cdot5 \right)=4f\left(\frac{5\pi}{24} \right)=4\tan^2\left(\frac{5\pi}{24} \right)\left( \frac{\pi}{4}-\frac{5\pi}{24} \right)\approx0.308290092997036$$

$$f\left(y_6 \right)=f\left(\frac{\pi}{24}\cdot6 \right)=f\left(\frac{\pi}{4} \right)=\tan^2\left(\frac{\pi}{4} \right)\left( \frac{\pi}{4}-\frac{\pi}{4} \right)=0$$

Adding these together, we find:

$$S_6\approx0.0380870342601150$$

For comparison, a numeric integration function returns:

$$0.038148452745930$$

Now, using the approximation we obtained, we may state:

$$W\approx\pi g\rho\cdot0.0380870342601150$$

Using the given data:

$$g=9.8\frac{\text{m}}{\text{s}^2},\,\rho=1000\frac{\text{kg}}{\text{m}^3}$$

and observing the integral has units of $\text{m}^4$, we have:

$$W\approx\pi\left(9.8\frac{\text{m}}{\text{s}^2} \right)\left(1000\frac{\text{kg}}{\text{m}^3} \right)\cdot0.0380870342601150\text{ m}^4\approx1172.60868088\text{ J}$$

For comparison, the exact answer is:

$$W=\frac{1225\pi}{4}\left(16\ln(2)-\pi^2 \right)\text{ J}\approx1174.5\text{ J}$$
 

Attachments

  • johnwork.jpg
    johnwork.jpg
    7.1 KB · Views: 150
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top