MHB Johnsy's question via Facebook

  • Thread starter Thread starter Prove It
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{ \frac{1 - y^2}{1 - x^2} }$. The solution involves integrating both sides, leading to the expression $y = A\,x + B\,\sqrt{1 - x^2}$, where $A$ and $B$ are constants derived from the integration process. The use of the Compound Angle Formula for sine and the Pythagorean Identity is emphasized, suggesting a more refined representation of the solution as $y = x\sqrt{1 - B^2} + B\sqrt{1 - x^2}$, highlighting the dependency between constants A and B.

PREREQUISITES
  • Understanding of differential equations
  • Familiarity with integration techniques
  • Knowledge of trigonometric identities, specifically the Compound Angle Formula
  • Proficiency in the Pythagorean Identity
NEXT STEPS
  • Study advanced techniques in solving differential equations
  • Explore the applications of the Compound Angle Formula in various mathematical contexts
  • Learn about the implications of constant dependencies in solutions of differential equations
  • Investigate the geometric interpretations of solutions to differential equations
USEFUL FOR

Mathematicians, students studying differential equations, and educators looking for detailed explanations of integration techniques and trigonometric identities.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the Differential Equation $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{ \frac{1 - y^2}{1 - x^2} } \end{align*}$

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \sqrt{ \frac{1 - y^2}{1 - x^2} } \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\sqrt{ 1 - y^2 }}{\sqrt{1 - x^2} } \\ \frac{1}{\sqrt{1 - y^2}} \, \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{1}{\sqrt{1 - x^2} } \\ \int{ \frac{1}{\sqrt{1 - y^2}}\, \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x} &= \int{\frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}x} \\ \int{ \frac{1}{\sqrt{1 - y^2}} \, \mathrm{d}y} &= \arcsin{(x)} + C_1 \\ \arcsin{(y)} + C_2 &= \arcsin{(x)} + C_1 \\ \arcsin{(y)} &= \arcsin{(x)} + C \textrm{ where } C = C_1 - C_2 \\ y &= \sin{ \left[ \arcsin{(x)} + C \right] } \\ y &= \sin{ \left[ \arcsin{(x)} \right] } \cos{(C)} + \cos{ \left[ \arcsin{(x)} \right] } \sin{(C)} \\ y &= A\sin{ \left[ \arcsin{(x)} \right] } + B\,\cos{ \left[ \arcsin{(x)} \right] } \textrm{ where } A = \cos{(C)} \textrm{ and } B = \sin{(C)} \\ y &= A\,x + B\,\sqrt{ 1 - \left\{ \sin{ \left[ \arcsin{(x)} \right] } \right\} ^2 } \\ y &= A\,x + B\,\sqrt{1 - x^2 } \end{align*}$

Make note of my use of the Compound Angle Formula for sine, and the Pythagorean Identity.
 
Mathematics news on Phys.org
I think you should note that $A$ and $B$ are not independent constants... it might be better to write:

$y = x\sqrt{1 - B^2} + B\sqrt{1 - x^2}$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 105 ·
4
Replies
105
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K