MHB Johnsy's question via Facebook

  • Thread starter Thread starter Prove It
  • Start date Start date
AI Thread Summary
The differential equation presented is solved by separating variables and integrating both sides, leading to the expression involving arcsin functions. The solution is expressed in terms of sine and cosine using the compound angle formula and the Pythagorean identity. Constants A and B are introduced, with a suggestion that they are not independent, leading to a refined expression for y. The final form of the solution is presented as y = x√(1 - B²) + B√(1 - x²). This approach highlights the relationships between the variables and constants in the context of the equation.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the Differential Equation $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{ \frac{1 - y^2}{1 - x^2} } \end{align*}$

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \sqrt{ \frac{1 - y^2}{1 - x^2} } \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\sqrt{ 1 - y^2 }}{\sqrt{1 - x^2} } \\ \frac{1}{\sqrt{1 - y^2}} \, \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{1}{\sqrt{1 - x^2} } \\ \int{ \frac{1}{\sqrt{1 - y^2}}\, \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x} &= \int{\frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}x} \\ \int{ \frac{1}{\sqrt{1 - y^2}} \, \mathrm{d}y} &= \arcsin{(x)} + C_1 \\ \arcsin{(y)} + C_2 &= \arcsin{(x)} + C_1 \\ \arcsin{(y)} &= \arcsin{(x)} + C \textrm{ where } C = C_1 - C_2 \\ y &= \sin{ \left[ \arcsin{(x)} + C \right] } \\ y &= \sin{ \left[ \arcsin{(x)} \right] } \cos{(C)} + \cos{ \left[ \arcsin{(x)} \right] } \sin{(C)} \\ y &= A\sin{ \left[ \arcsin{(x)} \right] } + B\,\cos{ \left[ \arcsin{(x)} \right] } \textrm{ where } A = \cos{(C)} \textrm{ and } B = \sin{(C)} \\ y &= A\,x + B\,\sqrt{ 1 - \left\{ \sin{ \left[ \arcsin{(x)} \right] } \right\} ^2 } \\ y &= A\,x + B\,\sqrt{1 - x^2 } \end{align*}$

Make note of my use of the Compound Angle Formula for sine, and the Pythagorean Identity.
 
Mathematics news on Phys.org
I think you should note that $A$ and $B$ are not independent constants... it might be better to write:

$y = x\sqrt{1 - B^2} + B\sqrt{1 - x^2}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top