Jordan Form & Matrix Exponential: Homework Statement and Solution

  • Thread starter Thread starter Kamekui
  • Start date Start date
  • Tags Tags
    Form Normal
Click For Summary
The discussion focuses on finding the Jordan form and matrix exponential for a given matrix A. The characteristic polynomial indicates a repeated eigenvalue of λ = -4 with multiplicity 4. The Jordan normal form is derived as J = diag(-4, -4, -4, 1), and the transformation matrix T is constructed to relate A and J. There are corrections made regarding the kernel of (A + 4I) and the linear independence of vectors used in the solution process. The final steps involve confirming the correctness of the transformation matrix T before proceeding to compute the matrix exponential.
Kamekui
Messages
12
Reaction score
0

Homework Statement



Find the Jordan form and use it to find the matrix exponential.

Homework Equations





The Attempt at a Solution



Let A =\begin{bmatrix}
-3 &-1 &-1 &-1 \\
-1 & -3 & 1 & 1 \\
1 & -1 & -5 & -1 \\
1 & -1 & -1 & -5
\end{bmatrix}

det(A-λI)=λ4+16λ3+96λ2+256λ+256

(λ+4)4
→ λ=-4 (Multiplicity 4)


A+4I=\begin{bmatrix}
1 &-1 &-1 &-1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1
\end{bmatrix}

=\begin{bmatrix}
1 &-1 &-1 &-1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}

\begin{bmatrix}
v1 \\
v2 \\
v3 \\
v4
\end{bmatrix} =
v1\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}+v2\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix} + v3\begin{bmatrix}
1 \\
0 \\
0 \\
1
\end{bmatrix}



Therefore, the Jordan Normal Form must look like:


J=\begin{bmatrix}
-4 &0 &0 &0 \\
0 & -4 & 0 & 0 \\
0 & 0 & -4 & 1 \\
0 & 0 & 0 & -4
\end{bmatrix}


Consider now that:

JE1=-4E1
JE2=-4E2
JE3=-4E3
JE4=E3-4E4


But this is equivalent to:

AE1=-4E1
AE2=-4E2
AE3=-4E3
AE4=E3-4E4


AE4=E3-4E4→ (A+4I)E4=E3


Now,

ker[(A+4I)2]=0

(A+4I)2E4=E3
0*E4=0

Therefore, E4 can be anything that is Linearly Independent of E1,E2, and E3.

Let E4=\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}


(A+4I)E4=E3
\begin{bmatrix}
1 &-1 &-1 &-1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1
\end{bmatrix}*\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}

=\begin{bmatrix}
-2 \\
2 \\
-2 \\
-2
\end{bmatrix}

I'm lost after this point
 
Physics news on Phys.org
Kamekui said:

Homework Statement



Find the Jordan form and use it to find the matrix exponential.

Homework Equations


The Attempt at a Solution



Let A =\begin{bmatrix}
-3 &-1 &-1 &-1 \\
-1 & -3 & 1 & 1 \\
1 & -1 & -5 & -1 \\
1 & -1 & -1 & -5
\end{bmatrix}

det(A-λI)=λ4+16λ3+96λ2+256λ+256

(λ+4)4
→ λ=-4 (Multiplicity 4)A+4I=\begin{bmatrix}
1 &-1 &-1 &-1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1
\end{bmatrix}

=\begin{bmatrix}
1 &-1 &-1 &-1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
$$\begin{bmatrix}
1 &-1 &-1 &-1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1
\end{bmatrix} \ne
\begin{bmatrix}
1 &-1 &-1 &-1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$ I know what you mean, but don't use an equal sign there. The matrices aren't equal.

Now,

ker[(A+4I)2]=0
This isn't correct. ##(A+4I)^2 = 0##, so the kernel is all of ##\mathbb{R}^4##.

(A+4I)2E4=E3
0*E4=0

Therefore, E4 can be anything that is Linearly Independent of E1,E2, and E3.
This isn't correct either. It's true that ##(A+4I)^2\vec{x}=0## is satisfied by any ##\vec{x}##, but it's not true that the vector will also satisfy ##(A+4I)\vec{x} = \vec{E}_3##.

You found the kernel of A+4I consists of vectors of the form
$$v1\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} +
v2\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} +
v3\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$ What you want to do is find a particular linear combination ##\vec{v}## so that ##(A+4I)\vec{x} = \vec{v}## will have a solution. The vector ##\vec{v}## corresponds to what you called E3, and the solution ##\vec{x}##, to E4.
 
Ok, I went back and tried this:

Let
E4=
\begin{bmatrix}
0\\
1\\
1\\
0
\end{bmatrix}

Then,

(A+4I)E4=E3
\begin{bmatrix}
1 & -1 & -1 & -1\\
-1 & 1 & 1 & 1\\
1 & -1 & -1 & -1\\
1 & -1 & -1 & -1
\end{bmatrix}*\begin{bmatrix}
0 \\
1 \\
1 \\
0
\end{bmatrix}
=\begin{bmatrix}
-2\\
2 \\
-2 \\
-2
\end{bmatrix}


Form a matrix T such that T-1AT=J


So, T=\begin{bmatrix}
1 & 1 & -2 & 1\\
1 & 0 & 2 & 1\\
0 & 1 & -2 & 1\\
0 & 0 & -2 & 1
\end{bmatrix}

and T-1=\begin{bmatrix}
1 & 0 & -1 & 0\\
0 & 0 & 1 & -1\\
-1/4 & 1/4 & 1/4 & -1/4\\
-1/2 & 1/2 & 1/2 & 1/2
\end{bmatrix}


T-1AT=\begin{bmatrix}
-4 & 0 & 0 & 0\\
0 & -4 & & 0\\
0 & 0 & -4 & 1\\
0 & 0 & 0 & -4
\end{bmatrix}
=J


If this is correct, computing the matrix exponential is easy, if its correct...
 
Did you mean
$$T = \begin{bmatrix}
1 & 1 & -2 & 1\\
1 & 0 & 2 & 1\\
0 & 1 & -2 & 1\\
0 & 0 & -2 & 1
\end{bmatrix}$$ or
$$T= \begin{bmatrix}
1 & 1 & -2 & 0\\
1 & 0 & 2 & 1\\
0 & 1 & -2 & 1\\
0 & 0 & -2 & 0
\end{bmatrix}?$$
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
3K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K