I want to prove (or disprove) that the vector with components(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\xi^u = \frac{v}{2 r_s}\hspace{5 mm} \xi^v = \frac{u}{2 r_s}[/tex]

is a Killing vector of the KS space-time with line element

[tex]\frac{4 r_s^3}{r} e^{-\frac{r}{r_s}} \left( du^2 -dv^2\right) + r^2 \left( d\theta^2 + sin^2 \theta d\phi^2\right) [/tex]

Here r is an implicit function of u,v, which is handled by a constraint equation.

However, I seem to be having a hard time getting GRT to handle the contraints. I try

[tex]\left( \frac{r}{r_s} - 1 \right) e^{\frac{r}{r_s}} = u^2 - v^2[/tex] directly, but it doesn't simplify.

I try to feed it the following

[tex]

{\frac {\partial }{\partial u}}r \left( u,v \right) =2\,{{\it r\_s}}^{

2}u \left( r \left( u,v \right) \right) ^{-1} \left( {e^{{\frac {r

\left( u,v \right) }{{\it r\_s}}}}} \right) ^{-1}

[/tex]

but it complains about "illegal use of object as a name", I can't see what it's objecting to.

So a) -does this look like the right expression for the Killing Vector? And b) - how does one successfully get the constraints into GrTensor?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Killing vectors in KS coordinates

**Physics Forums | Science Articles, Homework Help, Discussion**