Kinematics involving an airplane

Click For Summary
SUMMARY

The discussion focuses on calculating the horizontal distance a bomb travels after being dropped from an airplane at an altitude of 14,400 feet while flying at 600 miles per hour. The correct approach involves using the formula for horizontal displacement, d = v_x * t, where v_x is the horizontal velocity (880 ft/sec) and t is the time of fall (30 seconds). The final calculation yields a horizontal distance of 5 miles, correcting the initial miscalculation of 4.58 miles due to misunderstanding the relationship between horizontal and vertical motion.

PREREQUISITES
  • Understanding of kinematics and projectile motion
  • Familiarity with the Pythagorean theorem
  • Knowledge of unit conversions (e.g., feet to miles)
  • Basic grasp of gravitational acceleration (g = 32 ft/sec²)
NEXT STEPS
  • Study the principles of projectile motion in physics
  • Learn about the effects of air resistance on falling objects
  • Explore advanced kinematic equations for varying acceleration
  • Investigate real-world applications of kinematics in aviation
USEFUL FOR

Students studying physics, educators teaching kinematics, and anyone interested in understanding the dynamics of projectile motion in aviation contexts.

davedave
Messages
50
Reaction score
0

Homework Statement


A bomb is dropped from an airplane at an attitude of 14400 ft. The plane is moving at 600 miles per hour. How far will the bomb move horizontally after it is released from the plane?

Homework Equations


I use the formula involving the distance traveled by an object with no air resistance and the Pythagorean theorem.

(1) d= vt - 0.5gt^2
(2) a^2 + b^2 = c^2

The Attempt at a Solution


1 mile = 5280 ft
g = 32 ft/sec^2
the plane's speed = 600 miles per hours = 880 ft per sec

Assuming that the airplane has no vertical velocity, I let v = 0 in the first equation above.
Then, -14400 = -(0.5)(32)(t^2)
Solving for t gives t = 30 sec.

Next, the diagonal distance from the point at which the bomb is on the ground to the plane is
(880)(32)=28160 miles.

To find the horizontal distance traveled by the bomb, I use the Pythagorean formula

horizontal distance = square root of (28160^2 - 14400^2) = 24200 ft = 4.58 miles

My answer is wrong. The answer key says 5 miles. What did I do wrong?
Please explain it. Thank you very much
 
Physics news on Phys.org
Your work for the first part is correct the time is 29.9 seconds to reach the ground. For the second part what you did is incorrect the path is a parabola so the diagonal distance is not what you wrote there.

To find the horizontal displacement use d = vxit + 1/2 ax t2
You know the initial velocity in the x direction, and you know that the acceleration is zero since the only force acting on the body is the downward weight
 
davedave said:

The Attempt at a Solution


1 mile = 5280 ft
g = 32 ft/sec^2
the plane's speed = 600 miles per hours = 880 ft per sec

Assuming that the airplane has no vertical velocity, I let v = 0 in the first equation above.
Then, -14400 = -(0.5)(32)(t^2)
Solving for t gives t = 30 sec.

Next, the diagonal distance from the point at which the bomb is on the ground to the plane is
(880)(32)=28160 miles.
Always pay attention to the units you are using.

880 is in feet/second.
It's not clear if 32 represents g in ft/s2 or if it is supposed to be the time of fall of 30 seconds.

In any event, the result does not come out in units of miles. 28160 miles is larger than the diameter of the earth!
 
Next, the diagonal distance from the point at which the bomb is on the ground to the plane is
(880)(32)=28160 miles.

How did you get the diagonal distance by multiplying the horizontal speed with the gravitational attraction?

Anyway, the key thing here is that the horizontal distance traveled by the bomb only depends on the horizontal component of it's velocity. The horizontal distance is unaffected by the vertical component. Thus when the bomb leaves the plane it has a horizontal velocity of 880 ft/sec and the time for the journey as you found out was 30 sec. Therefore horizontal distance traveled is 880 \frac{ft}{s} * 30 s = 26400 ft = 5 miles
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
18K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
45
Views
5K