Kinematics, particle on half circle

Click For Summary
SUMMARY

The discussion revolves around calculating the mean velocity and total acceleration of a point traversing half a circle with a radius of 160 cm over a time interval of 10 seconds. The mean velocity is derived as v = R * θ / τ, leading to a mean acceleration formula of |w| = (2πR) / τ², which approximates to 10 cm/s². The participants clarify that assuming zero initial angular velocity (ω₀ = 0) is valid for this problem, as it simplifies calculations without loss of generality.

PREREQUISITES
  • Understanding of circular motion dynamics
  • Familiarity with angular acceleration and velocity concepts
  • Knowledge of kinematic equations
  • Basic proficiency in calculus for deriving motion equations
NEXT STEPS
  • Study the derivation of kinematic equations for circular motion
  • Learn about the relationship between linear and angular quantities in physics
  • Explore the implications of initial conditions on motion analysis
  • Investigate the effects of varying angular acceleration on circular motion
USEFUL FOR

Physics students, educators, and anyone interested in understanding the principles of kinematics, particularly in circular motion scenarios.

Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Here's the problem.

A point traversed half a circle of radius $R = 160 \text{ cm}$ during a time interval of $\tau = 10.0 \text{ s}$. Calculate the following quantities averaged over that time:

(a) the mean velocity $\langle v \rangle$;

(b) the modulus of the mean velocity $ |\langle {\mathbf v} \rangle|$;

(c) the modulus of the mean vector of the total acceleration $| \langle {\mathbf w} \rangle |$ if the point moved with constant tangent acceleration.

I'm having trouble with (c). Since he mentioned there is a constant tangent acceleration I assumed it is non-zero (this may not be the case). I did not manage to reach a conclusion. Assuming it is zero, the mean acceleration is merely the mean normal acceleration. This leads to

$$| \langle {\mathbf w} \rangle | = 2 | {\mathbf w}_n | = 2 \frac{\langle v \rangle^2}{R} = 2 \frac{\pi^2 R}{\tau^2}.$$

I'm missing something, because the alleged answer is

$$| \langle {\mathbf w} \rangle | = \frac{2 \pi R}{\tau^2} \approx 10 \frac{\text{cm}}{\text{s}^2}.$$

Thank you. :)
 
Mathematics news on Phys.org
Fantini said:
Here's the problem.

A point traversed half a circle of radius $R = 160 \text{ cm}$ during a time interval of $\tau = 10.0 \text{ s}$. Calculate the following quantities averaged over that time:

(a) the mean velocity $\langle v \rangle$;

(b) the modulus of the mean velocity $ |\langle {\mathbf v} \rangle|$;

(c) the modulus of the mean vector of the total acceleration $| \langle {\mathbf w} \rangle |$ if the point moved with constant tangent acceleration.

I'm having trouble with (c). Since he mentioned there is a constant tangent acceleration I assumed it is non-zero (this may not be the case). I did not manage to reach a conclusion. Assuming it is zero, the mean acceleration is merely the mean normal acceleration. This leads to

$$| \langle {\mathbf w} \rangle | = 2 | {\mathbf w}_n | = 2 \frac{\langle v \rangle^2}{R} = 2 \frac{\pi^2 R}{\tau^2}.$$

I'm missing something, because the alleged answer is

$$| \langle {\mathbf w} \rangle | = \frac{2 \pi R}{\tau^2} \approx 10 \frac{\text{cm}}{\text{s}^2}.$$

Thank you. :)

Hey Fantini! ;)

Let $\alpha$ be the angular acceleration, which is constant.
Let $\omega_0$ be the initial angular velocity.
And let $0 \le \theta \le \pi$.

Then:
$$| \langle {\mathbf w} \rangle |
= \left| \frac{\Delta \mathbf v}{\Delta t} \right|
= \left| \frac{\mathbf v(\pi) - \mathbf v(0)}{\tau} \right|
= \frac{|-R(\alpha\tau + \omega_0) + R\omega_0|}{\tau}
= R\alpha$$

Furthermore, we have:
$$\theta(\tau) = \frac 12 \alpha \tau^2 + \omega_0 \tau = \pi$$
$$\alpha = \frac{\pi - \omega_0\tau}{\frac 12 \tau^2}$$

So:
$$| \langle {\mathbf w} \rangle |
= R\frac{\pi - \omega_0\tau}{\frac 12 \tau^2}
=\frac{2\pi R}{\tau^2} - \frac{2\omega_0 R}{\tau}$$

Apparently your problem assumes that $\omega_0=0$.
 
Hey ILS! :)

This is problem 1.19 from Irodov's Problems in General Physics, 1988. Is there any loss of generality by assuming $\omega_0 = 0$? It seems not, since the circular movement begins after $t=0$.

Thank you for your insightful input. ;)
 
Fantini said:
Hey ILS! :)

This is problem 1.19 from Irodov's Problems in General Physics, 1988. Is there any loss of generality by assuming $\omega_0 = 0$? It seems not, since the circular movement begins after $t=0$.

Thank you for your insightful input. ;)

You are right that we can assume $t=0$ without loss of generality.
However, since $|\langle \mathbf w \rangle|$ changes with $\omega_0$, it seems to me that there is loss of generality. So I don't understand where this assumption is coming from.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
7K
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K