Kirchhoff's law: Find the current I3 through the Amp meter

Click For Summary
The discussion focuses on solving a circuit using Kirchhoff's laws, specifically finding the current I3 through an amp meter. The initial equations for the upper and lower loops were adjusted after identifying an error related to an extra resistor. The corrected equations led to the calculation of I3 as 0.336 A, with subsequent values for I1 and I2 determined as 2.43 A and 2.09 A, respectively. However, a verification of Kirchhoff's Voltage Law indicated a discrepancy, suggesting that the results could be more accurate with slight adjustments. The final values for I2 and I3 were confirmed to remain consistent despite the need for more precise calculations for I1.
skibidi
Messages
10
Reaction score
0
Homework Statement
Find the current I3,I2, and I1 through the Amp meter.
Answer in units of A.
Relevant Equations
I used the Junction Rule - I3= I1+I2
I separated the circuit into parts- upper and lower

For the upper loop I wrote: -14-2I1-3.4I3-I2 = 0
For the lower loop I wrote 16-2.9I2+3.4I3-5.4I2 = 0

I solved for I1 and I2 separately and plugged it into the junction rule and solved for I3.

I may have got it wrong because of the incorporation of the extra resistor in the upper loop and lower loop and solved incorrectly.

Utexas.png
 
Last edited by a moderator:
Physics news on Phys.org
Correction for the problem after i found I3 correctly now.

The correct equation is now -14+3.3(I1)+3.4(I3)+2(I1)= 0 for the upper loop and
-16+5.3(I2)-3.4(I3)+2.9(I2) = 0 for the bottom loop. Once you separate variables, I2 = stuff and I1 = stuff, you can use the junction rule I1 = I2+I3 and rearrange to get I1-I2=I3. Plug it in and you should get I3 = 0.336A
 
Use I3 to get I2 and I1 since you have separate equations for them already -

I1 = -3.4(I3)+14/5.3 and I2 = 3.4(I3) +16/ 8.2

I1 = 2.43 A , I2 = 2.09 A
 
If anyone else sees this, can you verify that my explanation is correct since I was able to get the correct answers on my own.
 
## \text { The explanation is correct, but the result can be more accurate. } ##

## 3,3 \Omega \cdot 2,43 A + ( - 14 ) V + 2 \Omega \cdot 2,43 A + 3,4 \Omega \cdot 0,336 A = ##
## = 8,0058 V – 14 V + 4,852 V + 1,1424 V = ##
## = 0,0214 V \neq 0 V ##
## \text { It is hard to say that Kirchhoff Voltage Law is satisfied for the upper loop because it is hard to say that } 0,0214 V \text { is equal to } 0 V \text { . } ##
## \text { The more accurate result can be got rounding the value of } I _ 1 \text { to } 2,426 A \text { instead of } 2,43 A \text { . } ##
## \text { Values of } I _ 2 \text { , which is } 2,090 A \text { , and } I _ 3 \text { , which is } 0,336 A \text { , can remain the same. } ##
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
22
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
10
Views
2K
Replies
16
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
6K