- #1

- 78

- 0

Having some trouble following my notes in QFT. Any help greatly appreciated.

We have the Klein Gordon equation for a real scalar field [itex]\phi\left(\overline{x},t\right)[/itex]; [itex]\partial_{\mu}\partial^{\mu}\phi + m^{2}\phi = 0[/itex].

To exhibit the coordinates in which the degrees of freedom decouple from each other, we take the Fourier transform, [itex]\phi\left(\overline{x},t\right)= \int\frac{d^{3}p}{\left(2\pi\right)^{3}}e^{i \overline{p} .\overline{x}}\phi\left(\overline{p},t\right)[/itex].

Then [itex]\phi\left(\overline{p},t\right)[/itex] satisfies [itex]\left(\frac{\partial^{2}}{\partial t^{2}}+\left(\overline{p}^{2} + m^{2}\right)\right)\phi\left(\overline{p},t\right) = 0[/itex].

If you do it by brute force you get [itex]\int\frac{d^{3}p}{\left(2\pi\right)^{3}}e^{ i \overline{p} .\overline{x}}\frac{\partial^{2}}{\partial t^{2}}\phi\left(\overline{p},t\right) - \int\frac{d^{3}p}{\left(2\pi\right)^{3}}\partial^{2}_{i}e^{ i \overline{p} . \overline{x}}\phi\left(\overline{p},t\right) + m^{2}\int\frac{d^{3}p}{\left(2\pi\right)^{3}}e^{ i \overline{p} . \overline{x}}\phi\left(\overline{p},t\right) = 0[/itex]

then [itex]\int\frac{d^{3}p}{\left(2\pi\right)^{3}}e^{ i \overline{p} .\overline{x}}\frac{\partial^{2}}{\partial t^{2}}\phi\left(\overline{p},t\right) + \int\frac{d^{3}p}{\left(2\pi\right)^{3}} \overline{p}^{2} e^{ i \overline{p} . \overline{x}}\phi\left(\overline{p},t\right) + m^{2}\int\frac{d^{3}p}{\left(2\pi\right)^{3}}e^{ i \overline{p} . \overline{x}}\phi\left(\overline{p},t\right) = 0[/itex]

Now I don't see how to get rid of the intergrals. I can see its similar to a delta function, but you can't just take the [itex]\phi\left(\overline{p},t\right)[/itex] out of the integrals because the measure is [itex]p[/itex].

Thanks for helping me with this, please let me know if I haven't been clear.

We have the Klein Gordon equation for a real scalar field [itex]\phi\left(\overline{x},t\right)[/itex]; [itex]\partial_{\mu}\partial^{\mu}\phi + m^{2}\phi = 0[/itex].

To exhibit the coordinates in which the degrees of freedom decouple from each other, we take the Fourier transform, [itex]\phi\left(\overline{x},t\right)= \int\frac{d^{3}p}{\left(2\pi\right)^{3}}e^{i \overline{p} .\overline{x}}\phi\left(\overline{p},t\right)[/itex].

Then [itex]\phi\left(\overline{p},t\right)[/itex] satisfies [itex]\left(\frac{\partial^{2}}{\partial t^{2}}+\left(\overline{p}^{2} + m^{2}\right)\right)\phi\left(\overline{p},t\right) = 0[/itex].

If you do it by brute force you get [itex]\int\frac{d^{3}p}{\left(2\pi\right)^{3}}e^{ i \overline{p} .\overline{x}}\frac{\partial^{2}}{\partial t^{2}}\phi\left(\overline{p},t\right) - \int\frac{d^{3}p}{\left(2\pi\right)^{3}}\partial^{2}_{i}e^{ i \overline{p} . \overline{x}}\phi\left(\overline{p},t\right) + m^{2}\int\frac{d^{3}p}{\left(2\pi\right)^{3}}e^{ i \overline{p} . \overline{x}}\phi\left(\overline{p},t\right) = 0[/itex]

then [itex]\int\frac{d^{3}p}{\left(2\pi\right)^{3}}e^{ i \overline{p} .\overline{x}}\frac{\partial^{2}}{\partial t^{2}}\phi\left(\overline{p},t\right) + \int\frac{d^{3}p}{\left(2\pi\right)^{3}} \overline{p}^{2} e^{ i \overline{p} . \overline{x}}\phi\left(\overline{p},t\right) + m^{2}\int\frac{d^{3}p}{\left(2\pi\right)^{3}}e^{ i \overline{p} . \overline{x}}\phi\left(\overline{p},t\right) = 0[/itex]

Now I don't see how to get rid of the intergrals. I can see its similar to a delta function, but you can't just take the [itex]\phi\left(\overline{p},t\right)[/itex] out of the integrals because the measure is [itex]p[/itex].

Thanks for helping me with this, please let me know if I haven't been clear.

Last edited: