I Klein-Gordon equation and continuity equation

Click For Summary
The discussion centers on the Klein-Gordon (K-G) equation and its relation to the continuity equation, specifically regarding the probability density formula. The factor of i in the probability density ensures that it remains real, as the expression inside the brackets is shown to be purely imaginary when the wavefunction is decomposed into its real and imaginary components. It is clarified that for a real K-G field, the probability density is zero, while for charged fields, it corresponds to the Noether charge. The conversation also touches on the nature of solutions to the Schrödinger equation, noting that it does not yield purely real solutions. Overall, the mathematical relationships and implications of the K-G equation are explored in detail.
dyn
Messages
774
Reaction score
63
Hi
I am using the textbook "Modern Particle Physics" by Thomson. Working from the K-G equation and comparing with the continuity equation he states that the probability density is given by

ρ = i ( ψ*(∂ψ/∂t) - ψ(∂ψ*/∂t) )

He then states that the factor of i is included to ensure that the probability density is real. My question is - why does the factor of i make this real. This implies the quantity inside the bracket is pure imaginary. Why is that true ? ψ could be real , complex or pure imaginary. It is just a general wavefunction
Thanks
 
Physics news on Phys.org
dyn said:
This implies the quantity inside the bracket is pure imaginary.
Yes. You can verify this easily by writing ##\psi = \psi_R + i \psi_I##, where ##\psi_R## and ##\psi_I## are real, and computing the quantity inside the bracket. You should find that all of the real parts cancel.

dyn said:
ψ could be real , complex or pure imaginary.
Yes, but the combination of terms inside the bracket is not ##\psi## and, as above, can be shown to be pure imaginary for a general ##\psi##.
 
Thank you very much for your help
 
A real KG field describes an uncharged particle, and thus for this case ##\rho=0##.

In the case of charged fields, ##\rho## is the time-component of the Noether charge from invariance under ##\psi \rightarrow \exp(-\mathrm{i} \alpha) \psi, \quad \psi^* \rightarrow \exp(+\mathrm{i} \alpha) \psi^*##,
$$j_{\mu} = \mathrm{i} (\psi^* \partial_{\mu} \psi - \psi \partial_{\mu} \psi^*).$$
That's a real vector field, which is immediately clear when taking the complex conjugate of this definition.

That it's conserved follows from the (free) KG equation,
$$\partial_{\mu} j^{\mu} = \mathrm{i} (\psi^* \Box \psi-\psi \Box \psi^*) = -\mathrm{i} m^2 (\psi^* \psi-\psi \psi^*)=0.$$
 
dyn said:
ψ could be real
Could it be purely real? I don't think Schrödinger equation has purely real solutions.
 
Sure, the KG equation is
$$(\Box+m^2) \psi=0$$
and thus has real solutions.

The time-dependent Schrödinger equation has a complex coefficient and thus has no real solutions.
 
vanhees71 said:
Sure, the KG equation is
$$(\Box+m^2) \psi=0$$
and thus has real solutions.

The time-dependent Schrödinger equation has a complex coefficient and thus has no real solutions.
Ah, I see. So, when ##\psi## is real, then ##j_{\mu} = \mathrm{i} (\psi^* \partial_{\mu} \psi - \psi \partial_{\mu} \psi^*) = 0## and, in the OP, ##\rho=0##.