A Klein Gordon Lagrangian -- Summation question

LagrangeEuler
Messages
711
Reaction score
22
Klein Gordon Lagrangian is given by
\mathcal{L}=\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-\frac{1}{2}m^2\phi^2
I saw also this link
https://www.pas.rochester.edu/assets/pdf/undergraduate/the_free_klein_gordon_field_theory.pdf
Can someone explain me, what is
\partial_{\mu}\phi\partial^{\mu}\phi
this is some sumation so I suppose that ##\mu## is dummy index? Right? So is it correct to write
\partial_{\mu}\phi\partial^{\mu}\phi=\partial_{\alpha}\phi\partial^{\alpha}\phi?
 
Physics news on Phys.org
That's correct, equivalently ##\partial_{\mu} \phi \partial^{\mu} \phi = g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi## where as usual summation is required over repeated indices.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top