MHB Km8,38 Find the value of \theta if it exists

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Value
AI Thread Summary
The discussion revolves around finding the value of θ for the equation θ = tan⁻¹(√3). It is established that tan(θ) = √3 corresponds to θ = π/3 radians or 60 degrees. A geometric explanation is provided using an equilateral triangle, where the altitude creates two right triangles, confirming that the tangent of the angle opposite the altitude equals √3. The conversation touches on the methods of finding this value, including using calculators or trigonometric tables, but emphasizes the geometric approach. The thread concludes with light-hearted remarks about aging and memory.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the value of $\theta$ if it exists
$$\theta=\tan^{-1}\sqrt{3}$$
rewrite
$$\tan(\theta)=\sqrt{3}$$
using $\displaystyle\tan\theta = \frac{\sin\theta}{\cos\theta}$ then if $\displaystyle\theta = \frac{\pi}{3}$
$$\displaystyle\frac{\sin\theta}{\cos\theta}
=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}
=\sqrt{3}$$ok I think this is a little awkward since it is observing the unit circle to see what will work
so was wondering if there is a more proper way.
 
Mathematics news on Phys.org
My first thought would be to use a calculator (or, if you are as old as I am, a table of trig functions) but I suspect that is not what you mean. For $tan(\theta)= \sqrt{3}$, imagine an equilateral triangle with all three sides of length 2. Draw a perpendicular from one vertex to the opposite side. That will also bisect the opposites side and bisect the vertex angle. So it divides the equilateral triangle into two right triangles, each with hypotenuse of length 2 and one leg of length 1. By the Pythagorean theorem, The third sides, the altitude of the equilateral triangle, has length $\sqrt{2^2- 1^2}= \sqrt{3}$. So the tangent of the angle opposite that side of length $\sqrt{3}$ is $\frac{\sqrt{3}}{1}= \sqrt{3}$. Of course that angle is one of the original angles of the equilateral triangle so 60 degrees or $\pi/3$ radians.
 
I'm 74
 
Just a young guy then! You'd be surprised what geezers most of us are. Nothing else to do, I guess.
 
we have to let the young (under 70) know our brain didn't implode:rolleyes:

just can't remember a D*** thing anymore...
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top