Koenigsegg Regera - acceleration

Click For Summary
SUMMARY

The Koenigsegg Regera features a groundbreaking hybrid propulsion system with a combined output of 1,500 horsepower, utilizing two electric motors and a 5.0L twin-turbo V8 engine. The vehicle achieves 0-60 mph in 2.8 seconds, leveraging a hydraulic clutch and a final drive ratio of 2.85:1. Discussions reveal discrepancies in torque calculations, particularly regarding the effective torque delivered to the wheels, which raises questions about the accuracy of the published acceleration figures. The analysis suggests that the hydraulic clutch functions similarly to a torque converter, potentially multiplying torque significantly at low RPMs.

PREREQUISITES
  • Understanding of hybrid vehicle propulsion systems
  • Familiarity with torque and power calculations
  • Knowledge of vehicle dynamics and acceleration metrics
  • Basic grasp of hydraulic systems and torque converters
NEXT STEPS
  • Research the mechanics of torque converters and their application in hybrid vehicles
  • Explore Koenigsegg's proprietary technologies and engineering innovations
  • Learn about electric motor performance characteristics and their impact on acceleration
  • Investigate advanced vehicle simulation tools for performance analysis
USEFUL FOR

Automotive engineers, performance car enthusiasts, and anyone interested in hybrid technology and vehicle acceleration dynamics will benefit from this discussion.

jnnx
Messages
28
Reaction score
1
hi guys
did you noticed announcement of new koenigsegg regera?
http://jalopnik.com/how-the-1-500-hp-koenigsegg-regera-hits-248-mph-without-1689181377
1500hp, two electric motors driving wheels, and one connected to engine. no transmission, only hydraulic clutch and final drive.
interesting thing is, that they said the engine engages at ~50kmh, and at lower speeds, electricity is moving the vehicle. they also published a graph of power and torque figures of whole propulsion system. 0-60mph at 2.8sec, 0-250mph at sub 20 seconds.
kiiw5ej11e0vvre4xxev.jpg


my problem is this. if you look at the combined torque figure ( at 1000rpm) there is around 600Nm of electric torque. we can assume, that that is torque of two electric motors. there is final drive (2.85:1) between engine and motors, so that two motors would produce aprox (600nm*2.85) 1710Nm going to the wheels. and that is actually very very little. 2l petrol engine with transmission (lets say 4:1 for first gear and 4:1 final drive) sending to the wheels like (200nm*4*4) 3200Nm

I put it all (weight, aprox torque curve, gear, tyres, aero coefficient...) in my excel sheet which can calculate thinks like this and with this torque, it calculated that 0-50kmh would take almost 5 seconds and 0-100kmh something like 7seconds that is more than twice more than official time. other acceleration figures (90-150mph and 30-250mph) it calculated very close to official figures.

so help me here. did I make somewhere a mistake? because unless the published power/torque curves are wrong, I can't understand how it could achieve that 0-60mph acceleration time.
 
Engineering news on Phys.org
Combined torque is given as 900 Nm for 1000 rpm. I don't know the size of the wheels so it is tricky to convert that to a speed.

Accelerating to 50 km/h takes about 150 kJ, at the given power value of 110 kW (at 1000 rpm) this would just take a bit over 1 second - the wheels might slip if you try that.
 
mfb said:
Combined torque is given as 900 Nm for 1000 rpm. I don't know the size of the wheels so it is tricky to convert that to a speed.

Accelerating to 50 km/h takes about 150 kJ, at the given power value of 110 kW (at 1000 rpm) this would just take a bit over 1 second - the wheels might slip if you try that.
we know that it reaches 400kmh at 8250rpm with final gear of 2.85:1. from that we can calculate wheel radius of aprox 0.367m
thing is, that until 45-50kmh the engine should be disengaged from powering the wheels. so we have only 600Nm of electric motors, and the power output scales with revs. 600Nm at 1000rpm produces 62kW, at 500rpm it is 31kW etc
 
I think they have it wrong in their explanation in this article.

The electric motor/engine combination is used at any speed in conjunction with the 2 other electric motors. When they talk about an «hydraulic coupling that acts like a clutch, [...] This sounds similar in concept to a torque converter», it is in fact a torque converter. A torque converter also multiplies torque when it is slipping at low rpm. The typical multiplier effect is 1.8:1 to 2.5:1 and can be up to 5:1. Let's assume it is 2:1 for now.

The engine looks like it can produce about 500 N.m of torque at a stall rpm of about 1600 rpm. Let's assume the electric motor makes 300 N.m like the other two. That is a combined torque of 800 N.m. After the torque converter, it becomes 1600 N.m and after the gear reducer it becomes 4560 N.m.

Then you add the 2 other motors producing an extra 600 N.m for a total of 5160 N.m.

The tractive force with a 0.367 m tire radius is 14 060 N.

The car weights 3589 lb (1628 kg). Add a 70 kg driver and you get a total of 1698 kg. It is pretty safe to assume the car has a 50/50 weight distribution, so that is 849 kg on the rear wheels or a normal force of 8329 N acting on the rear tires.

The tire coefficient of friction to support such a tractive force needs to be 14 060 / 8329 = 1.7. That is about the largest tire coefficient of friction that you can find on a tire (apart from drag racing tires).

I may have overestimated stall rpm, torque multiplier and/or some torque rating, but then again 1.7 is also a pretty high number for a CoF.
 
yes, explanation that hydraulic clutch is actually torque converter and the engine is powering the car from (almost) standstill would make lots of sense, and solve this problem.
 

Similar threads

Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 8 ·
Replies
8
Views
7K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 18 ·
Replies
18
Views
7K
  • · Replies 10 ·
Replies
10
Views
4K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
4K