MHB Lacey's question at Yahoo Answers regarding a quadratic equation

Click For Summary
The quadratic equation -3x^2 - x - 5 = 0 can be transformed to 3x^2 + x + 5 = 0 by multiplying through by -1. The coefficients are identified as a = 3, b = 1, and c = 5, leading to a discriminant calculation of Δ = b² - 4ac = 1 - 60 = -59. Since the discriminant is negative, the equation has two complex conjugate roots. Using the quadratic formula, the roots are found to be x = (-1 ± i√59) / 6. This discussion highlights the importance of the discriminant in determining the nature of the roots of a quadratic equation.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solve the quadratic equation?

Consider the following quadratic equation -3x^2-x-5=0

Use the discriminant b^2-4ac to determine the number of solutions of the quadratic equation

Solve using the quadratic equation usinf the formula y= (-b +/- √b^2-4ac) / 2a

Here is a link to the question:

Solve the quadratic equation? - Yahoo! Answers

I have posted a link there so the OP can find my response.
 
Mathematics news on Phys.org
Hello Lacey,

The first thing I would do is multiply through by -1, just to get rid of all those negative signs, as this will not change the value of the discriminant and roots:

$$3x^2+x+5=0$$

Now, we identify:

$$a=3,\,b=1,\,c=5$$

and the discriminant is:

$$\Delta=b^2-4ac=(1)^2-4(3)(5)=1-60=-59<0$$

Since the discriminant is negative, we know we will have two, complex conjugate roots.

Using the quadratic formula, we find that these roots are:

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-1\pm\sqrt{-59}}{2(3)}=\frac{-1\pm i\sqrt{59}}{6}$$

To Lacey and any other guests viewing this topic, I invite and encourage you to post other such questions in our http://www.mathhelpboards.com/f2/ forum.

Best Regards,

Mark.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
9K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
Replies
1
Views
10K