Lagrange multipliers understanding

Click For Summary
SUMMARY

The discussion centers on the application of Lagrange multipliers in optimization problems, specifically maximizing functions subject to constraints. The participants analyze the function f(x,y,z)=x^2-y^2+yz with the constraint z=y^2, noting that the lack of x in the constraint allows f to increase indefinitely. They clarify that the gradients of the functions involved must be parallel at the extrema, and they identify critical points, including (0,0,0) and (0,2/3,4/9). The conversation highlights the importance of correctly interpreting constraints in optimization problems.

PREREQUISITES
  • Understanding of multivariable calculus
  • Familiarity with Lagrange multipliers
  • Knowledge of gradient vectors and their properties
  • Ability to interpret constraints in optimization problems
NEXT STEPS
  • Study the method of Lagrange multipliers in detail
  • Explore examples of optimization problems with multiple constraints
  • Learn about saddle points and local minima in multivariable functions
  • Practice using LaTeX for mathematical expressions in discussions
USEFUL FOR

Students and professionals in mathematics, engineering, and economics who are dealing with optimization problems, particularly those involving multiple variables and constraints.

lys04
Messages
144
Reaction score
5
Homework Statement
constraints in Lagrange multiplier questions and the nature of the Extrema
Relevant Equations
∇f= λ∇g
Here’s my basic understanding of Lagrange multiplier problems:

A typical Lagrange multiplier problem might be to maximise f(x,y)=x^2-y^2 with the constraint that x^2+y^2=1 which is a circle of radius 1 that lie on the x-y plane. The points on the circle are the points (x,y) that satisfy the constraint equation. The problem is to find which of these (x,y) points maximises the function f.
Can view x^2+y^2=1 as the level curve when c=1 for the function g(x,y)=x^2+y^2

And this might happen when the gradient of g is parallel to the gradient of f. This is because the gradient of f, a vector quantity, indicates the direction to move the (x,y) point to get the greatest rate of change of f. If this vector is perpendicular to the surface of the level curve, that means no component of the gradient vector is in the direction of the tangent line at the point (x,y). And because the gradient is perpendicular to the level curve at any point, this means the gradient of f is parallel to the gradient of g.

Here’s where I get confused,
Take the problem to be maximise f(x,y,z)=x^2-y^2+yz with the constraint z=y^2.
I know that I can rewrite the constraint equation into z-y^2=0, which can be viewed as the level curve c=0 of the function g(x,y,z)=z-y^2 or g(y,z)=z-y^2? I get a bit confused here but I believe the first one, g(x,y,z) is correct because only then the gradient will have 3 components and can be parallel to the gradient of f which also has 3 components?
So basically here I have the level SURFACE of g(x,y,z)=z-y^2 at c=0, and finding out which of these points on the level SURFACE gives me the maximum value of f?

And secondly, I would like to clarify Lagrange multiplier problems with two constraints.
Lagrange multiplier problems with two constraints, i.e maximising f with constraints g=c_1 and h=c_2 (assume that f, g and h are all functions of three variables). Then I want to find points (x,y,z) that satisfy both constraints, and out of these points I want to find ones that maximises/minimises f.

Given that the level curves of g and h intersect, call it C, along the curve, the gradients of g and h will be perpendicular to the tangent lines.

And when f is at a maximum/minimum, there is no direction I can move so that f will continue to increase/decrease. This means that the gradient of f at the maximum/minimum must be perpendicular to the tangent of C. This means that it’s also parallel to the gradients of g and h.

Using this equation below, I get 5 equations by taking the partial derivative with respect to each variable. (First image)

Here’s what I am confused about this, from the last 3 equations, how do we know that the gradient of f is parallel to that of g and h?
And I think it’s because:
And since from before I know that the gradient of g and h are parallel, this means (second image)
So if I plug this into the equations above for the partial derivatives of x, y and z then I’ll get that the partial derivative of f with respect to x, y and z is equal to a scalar multiple times the partial derivative of h? (Not actually gonna do this, just an idea for how the partial derivative of f equally a linear combination of the partial derivatives of g and h means that they are parallel).

And I can’t use the second derivative test on the solutions I found to tell whether it’s a maximum or a minimum because these are not necessarily the critical points of f, although they are the critical points of L?
 

Attachments

  • IMG_0114.jpeg
    IMG_0114.jpeg
    35.3 KB · Views: 113
  • IMG_0115.jpeg
    IMG_0115.jpeg
    8.6 KB · Views: 101
Physics news on Phys.org
lys04 said:
Take the problem to be maximise f(x,y,z)=x^2-y^2+yz with the constraint z=y^2.
I’m no expert but would hate you to feel ignored!

You have:
Maximise: ##f(x,y,z)=x^2-y^2+yz##
Constraint: ##z=y^2##

The constraint does not contain ##x##. That means ##x^2## (hence ##f(x,y,z)##) can be as large as you want without being limited by the constraint.

Therefore, IMO, I’d say the question is faulty. But I will be pleased to be corrected if I've misunderstood.

Also worth noting - you’d probably get more replies if you typed your equations using LaTeX. (Link to LaTex guide at bottom/left of editting window.)

Edited.
 
Last edited:
Thanks for replying! Appreciate it lots.
Yeah I got confused to by the fact that the constraint did not contain x, but this is a problem actually from the vector calculus booklet from my uni and the answer is that the Extrema are at points (0,0,0) and (0,2/3,4/9).
Although I agree with what you said, z=y^2 looks like a bunch of parabola cross sections, so if some z and y value minimises/maximises f then I can choose any x I want to make it even bigger/smaller?
 
  • Like
Likes   Reactions: Steve4Physics
lys04 said:
Thanks for replying! Appreciate it lots.
Yeah I got confused to by the fact that the constraint did not contain x, but this is a problem actually from the vector calculus booklet from my uni and the answer is that the Extrema are at points (0,0,0) and (0,2/3,4/9).

Although I agree with what you said, z=y^2 looks like a bunch of parabola cross sections, so if some z and y value minimises/maximises f then I can choose any x I want to make it even bigger/smaller?
You can make ##f## bigger with any non-zero value of ##x##. But you can't make ##f## smaller because you are adding ##x^2## which is non-negative (assuming ##x## is real).

The official answer is only true if there is an additional constraint that ##x=0##.

For example, the points ##(100, 0, 0)## and ##(100, \frac 23 , \frac 49)## also satisfy the constraint but give much bigger values of ##f## than ##(0, 0, 0)## and ##(0, \frac 23 , \frac 49)##.

So there is a mistake in the question and/or the official answer. It happens!
 
Last edited:
  • Like
Likes   Reactions: lys04
Is the problem to maximise the function or to find the stationary points? As mentioned, the x^2 term means that there cannot be any local maxima.
 
I'll attach a picture of the original problem,
1707782003618.jpeg
 
Steve4Physics said:
You can make ##f## bigger with any non-zero value of ##x##. But you can't make ##f## smaller because you are adding ##x^2## which is non-negative (assuming ##x## is real).

The official answer is only true if there is an additional constraint that ##x=0##.

For example, the points ##(100, 0, 0)## and ##(100, \frac 23 , \frac 49)## also satisfy the constraint but give much bigger values of ##f## than ##(0, 0, 0)## and ##(0, \frac 23 , \frac 49)##.

So there is a mistake in the question and/or the official answer. It happens!
Oh yeah forgot that x is squared.
Yeah thats true, not sure whats going on with this problem.

Thanks for your help! :)
 
Steve4Physics said:
You can make ##f## bigger with any non-zero value of ##x##. But you can't make ##f## smaller because you are adding ##x^2## which is non-negative (assuming ##x## is real).

The official answer is only true if there is an additional constraint that ##x=0##.

For example, the points ##(100, 0, 0)## and ##(100, \frac 23 , \frac 49)## also satisfy the constraint but give much bigger values of ##f## than ##(0, 0, 0)## and ##(0, \frac 23 , \frac 49)##.

So there is a mistake in the question and/or the official answer. It happens!
I just checked the answers again and (0,0,0) is a saddle point and (0,2/3,4/9) is a local minimum, so that problem wouldn’t exist right
 
lys04 said:
I'll attach a picture of the original problem,
View attachment 340250
So indeed it asks for the critical points and not for the maximum of f.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K