Lagrangian mechanics -- Initial questions

Click For Summary
SUMMARY

This discussion focuses on Lagrangian mechanics as presented in the Landau-Lifshitz course, specifically addressing the formulation of the Lagrangian for non-interacting and interacting particles. The Lagrangian for free particles is expressed as a function of velocity squared, \(L = L(v^2)\), and the implications of adding interaction terms are explored. Key questions include the significance of velocity dependence in interaction terms and the generality of the kinetic term in the Lagrangian formulation. The conversation emphasizes the flexibility of the Lagrangian's structure while adhering to the principles of homogeneity and isotropy in space and time.

PREREQUISITES
  • Understanding of Lagrangian mechanics and its formulation
  • Familiarity with the variational principle in physics
  • Knowledge of classical mechanics, particularly the concepts of kinetic and potential energy
  • Basic grasp of non-inertial reference frames and forces such as the Coriolis force
NEXT STEPS
  • Study the implications of velocity-dependent forces in Lagrangian mechanics
  • Explore the derivation of the Coriolis force from a potential with velocity dependence
  • Investigate the role of homogeneity and isotropy in classical mechanics
  • Examine advanced topics in Lagrangian mechanics, such as gauge invariance and symmetries
USEFUL FOR

The discussion is beneficial for theoretical physicists, students of classical mechanics, and anyone interested in the foundational principles of Lagrangian dynamics and their applications in various physical systems.

Umaxo
Messages
51
Reaction score
12
Hi,

I am reading Landau-Lifshitz course in theoretical physics 1. volume, mechanics. The mechanics is derived using variatonal principle from the start.

At first they start with point particles, that do not interact with each other. Thus the equations of motions must be independent for the particles and therefore lagrangian might be written as sum of lagrangians of individual particles.

Now, if we assume homogeneity and isotropy of space and homogenity of time, then lagrangian of free particle cannot depend on spatial coordinates, time coordinate, nor can it depend on direction of velocity (independence of lagrangian on higher derivatives is assumed as experimental fact):
$$L=L\left(v^2\right)$$

Then if we use galileo relativity principle we can compare lagrangian in two systems moving relative to each other and we get usual kinetic term.

If we want mechanical system of n noninteracting free particles, we just use additivity of lagrangian. However, if we want particles to be interacting, in the book they subtract term: $$U=U\left(\vec{r}_1...\vec{r}_n\right)$$
This form is good, because it is evident that propagation velocity of interactions is infinite which is needed because of absolutness of time and galileo relativity principle.
As the book goes on, one finds out that explicit dependence on time coordinate means there is some kind of external field, or at least one can interpret it as such.

Now, I have two questions:

1.) Does dependence of interacting term on velocities means there is finite propagation velocity of interactions? If not, what would including such dependence mean?


2) The lagrangian in the form of kinetic (free particles) term + interaction term is in the book assumed. Obviously, if interaction term could depend on velocities, one can always write lagrangian in this form. But if not, does it make sense to have lagrangian with more general kinetic term than just free particle lagrangian?

Thanks :)
 
Physics news on Phys.org
Umaxo said:
Now, I have two questions:

1.) Does dependence of interacting term on velocities means there is finite propagation velocity of interactions? If not, what would including such dependence mean?

That doesn't necessarily mean that interactions propagate at a finite velocity. For now you could interpret such dependence as the presence of a force which is stronger or weaker depending of the particles' velocity. When you get to non-inertial frames of reference, you will learn about Coriolis force, which is velocity-dependent and can be derivated from a potential where v appears explicitly, and there is no finite popagation velocity to speak about.

Umaxo said:
2) The lagrangian in the form of kinetic (free particles) term + interaction term is in the book assumed. Obviously, if interaction term could depend on velocities, one can always write lagrangian in this form. But if not, does it make sense to have lagrangian with more general kinetic term than just free particle lagrangian?
The lagrangian is actually quite indetermined, so there comes a point where you can interpret its terms as you please as long as you get the correct equations of motion out of it.
 
  • Like
Likes   Reactions: Umaxo
angrystudent said:
When you get to non-inertial frames of reference, you will learn about Coriolis force, which is velocity-dependent and can be derivated from a potential where v appears explicitly, and there is no finite popagation velocity to speak about.

Make sense... But in the book, they assume to be in frame of reference in which space and time are homogeneous and isotropic. Doesnt this have any influence on your discussion?
 
Umaxo said:
But in the book, they assume to be in frame of reference in which space and time are homogeneous and isotropic. Doesnt this have any influence on your discussion?

Ok i thought about it and this question is no longer relevant for me. However, another quetion arose in me. Sadly i don't have a lot of time right now. but i will be back soon:)
 

Similar threads

Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K