- #1

- 46

- 0

- Thread starter med17k
- Start date

- #1

- 46

- 0

- #2

- 406

- 15

- #3

- 17,073

- 8,174

[tex]\int_{\mathrm{S}_1} \mathrm{d} \Omega \mathrm{Y}_{lm}^*(\vartheta,\varphi)\mathrm{Y}_{l'm'}(\vartheta,\varphi)=\int_0^{\pi} \mathrm{d} \vartheta \int_0^{2 \pi} \mathrm{d} \varphi \sin \vartheta \mathrm{Y}_{lm}^*(\vartheta,\varphi)\mathrm{Y}_{l'm'}(\vartheta,\varphi)=\delta_{ll'} \delta_{mm'}.[/tex]

Any harmonic function on [itex]\mathbb{R}^3[/itex] then can be expanded in the sense of convergence with respect to the corresponding Hilbert-space norm by

[tex]f(\vec{x})=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left [f_{1lm}(r) r^l + f_{2lm} \frac{1}{r^{l+1}} \right ]\mathrm{Y}_{lm}.[/tex]

In arbitrary dimensions the analogues of the spherical harmonics are known as Gegenbauer functions.

- #4

- 46

- 0

- #5

Ben Niehoff

Science Advisor

Gold Member

- 1,879

- 162

[tex]G(\vec r, \vec r') = \frac{1}{\lvert \vec r - \vec r' \rvert}[/tex]

and in n dimensions, it is easy to show that the Green function is

[tex]G(\vec r, \vec r') = \frac{1}{\lvert \vec r - \vec r' \rvert^{n-2}}[/tex]

To show this, write the Laplace equation in spherical coordinates, and assume your solution is a function of r alone. Then the Green function follows by translational invariance.

- Last Post

- Replies
- 1

- Views
- 2K

- Last Post

- Replies
- 1

- Views
- 3K

- Replies
- 9

- Views
- 5K

- Replies
- 2

- Views
- 719

- Replies
- 11

- Views
- 3K

- Last Post

- Replies
- 0

- Views
- 737

- Last Post

- Replies
- 1

- Views
- 1K

- Replies
- 4

- Views
- 861

- Last Post

- Replies
- 1

- Views
- 1K

- Replies
- 4

- Views
- 3K