Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Laplace equation in polar coordinates.

  1. Sep 25, 2013 #1
    [tex]\nabla^2 u=\frac {\partial ^2 u}{\partial x^2}+\frac {\partial ^2 u}{\partial y^2}=\frac {\partial ^2 u}{\partial r^2}+\frac{1}{r}\frac {\partial u}{\partial r}+\frac{1}{r^2}\frac {\partial ^2 u}{\partial \theta^2}[/tex]

    I want to verify ##u=u(r,\theta)##, not ##u(x,y)##

    Because for ##u(x,y)##, it will just be ##\frac {\partial ^2 u}{\partial x^2}+\frac {\partial ^2 u}{\partial y^2}##

    Last edited: Sep 25, 2013
  2. jcsd
  3. Sep 26, 2013 #2


    User Avatar
    Science Advisor
    Gold Member

  4. Sep 26, 2013 #3
    I know the derivation, I just want to confirm as none of the books or notes specify this.

    It should be ##u(r,\theta)## not ##u(x,y)##.
  5. Sep 26, 2013 #4


    User Avatar
    Science Advisor
    Gold Member
    2017 Award

    Of course for [itex]\vec{r} \neq 0[/itex] you have
    The vector operators are better defined through covariant integrals than by brute force as in UltrafastPED's source, although it's of course a valid way to find the expression for the covariant differential operators.

    A third, more physicist's way, is to use the action principle. Define the action
    [tex]A=\int_{\mathbb{R}^2} \mathrm{d}^2 \vec{r} \left [\frac{1}{2}(\vec{\nabla} u)^2+u \Phi \right],[/tex]
    where [itex]\Phi[/itex] is an arbitrary external field. Taking the variation you see that the stationary point is
    [tex]\frac{\delta A}{\delta u}=0 \; \Rightarrow \; \Delta u=\Phi.[/tex]
    To evaluate thus the Laplace operator in polar coordinates, you simply write out the action in these coordinates. You only need the gradient in polar coordinates, which is very easy to derive by using differential forms:
    [tex]\mathrm{d} u=\mathrm{d} \vec{x} \cdot \vec{\nabla} u=\mathrm{d} r \vec{e}_r \cdot \vec{\nabla} u + r \mathrm{d} \theta \vec{e}_\vartheta \cdot \vec{\nabla} u=\mathrm{d} r \partial_r u + \mathrm{d} \theta \partial_{\theta} u.[/tex]
    Comparison of both sides of the last equation of this line shows that
    [tex]\vec{\nabla} u = \vec{e}_r \partial_r u + \vec{e}_{\theta} \frac{1}{r} \partial_{\theta} u.[/tex]
    Further you have
    [tex]\mathrm{d}^2 \vec{r}=r \mathrm{d} r \mathrm{d} \theta,[/tex]
    and thus
    [tex]A=\int_0^{\infty} \mathrm{d} r \int_0^{2 \pi} \mathrm{d} \theta r \left [\frac{1}{2}(\partial_r u)^2+\frac{1}{2r^2} (\partial_{\theta}) u + u \Phi \right].[/tex]
    Then via the Euler-Lagrange equations you get the stationary point of the action as given by
    [tex]\frac{\partial}{\partial r} \left (r \frac{\partial u}{\partial r} \right )+\frac{1}{r} \frac{\partial^2 u}{\partial \theta^2}=r \Phi,[/tex]
    and finally dividing by [itex]r[/itex]
    [tex]\Phi=\Delta u=\frac{1}{r} \frac{\partial}{\partial r} \left (r \frac{\partial u}{\partial r} \right )+\frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.[/tex]
  6. Sep 26, 2013 #5


    User Avatar
    Science Advisor
    Gold Member

    See steps (4) and (5).

    If your function is expressed as u(x,y) you should use the cartesian form.
    If it is in polar form then you should use the polar form.

    Otherwise you have to go through all of the steps (4) and (5), making use of the chain rule.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook