Laplace Equation Numerical Solution

jawad hussain
Messages
6
Reaction score
1
Homework Statement
Place a charge of +1 mC at the centre of the square, and initially
using the relaxation method, solve the potentials inside the grid for
the boundary conditions:
• N=S=E=W=10 V
• N=S=10 V; E=W=−10 V
• N=0 V; E=10 V; S=20 V; W=30 V
Relevant Equations
Laplace Equation, Poisson equation
I wonder how to incorporate point charge?
 
Physics news on Phys.org
Perhaps an application of conformal mapping, with an inversion at the point?
Or maybe make it a square too, then take the limit as it shrinks to a point.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top