1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Laurent series around infinity

  1. Oct 14, 2013 #1
    Laurent series at infinity point

    I already calculated it, but my work was too long, I really wish to find a shorter route.
    Calculate the Laurent series of [itex]\frac{1}{(z^{2}+1)^{2}}[/itex] around [itex]z_{0} = 0[/itex]
    First, I used simple fractions and I got:
    [itex]\frac{1}{(z^{2}+1)^{2}}=\frac{-i}{4} \frac{1}{z-i} + \frac{i}{4} \frac{1}{z+i} + \frac{-1}{4} \frac{1}{(z-i)^{2}} + \frac{-1}{4} \frac{1}{(z+i)^{2}}[/itex]
    Then I did:
    [itex]\frac{1}{z-i}=\frac{1}{-i(1+iz)}= i \displaystyle \sum_{n=0}^{\infty} (-iz)^{n}[/itex]
    [itex]\frac{1}{z+i}=\frac{1}{i(1-iz)}= -i \displaystyle \sum_{n=0}^{\infty} (iz)^{n}[/itex]
    [itex]\frac{1}{(z-i)^{2}} = \frac{\partial}{\partial z} ( - \frac{1}{z-i} )[/itex]
    [itex]\frac{1}{(z+i)^{2}} = \frac{\partial}{\partial z} ( - \frac{1}{z+i} )[/itex]
    Then we got:
    [itex]\frac{1}{(z-i)^{2}} = \frac{\partial}{\partial z}( -i \displaystyle \sum_{n=0}^{\infty} (-iz)^{n} ) = -i \displaystyle \sum_{n=0}^{\infty} (n+1) (-i) (-iz)^{n}[/itex]
    [itex]\frac{1}{(z+i)^{2}} = \frac{\partial}{\partial z}( i \displaystyle \sum_{n=0}^{\infty} (iz)^{n} ) = i \displaystyle \sum_{n=0}^{\infty} (n+1) (i) (iz)^{n}[/itex]
    Then we have
    [itex]\frac{1}{4} (-i i \displaystyle \sum_{n=0}^{\infty} (-iz)^{n} + i(-i) \displaystyle \sum_{n=0}^{\infty} (iz)^{n} + (-1) (-i) \displaystyle \sum_{n=0}^{\infty} (n+1) (-i) (-iz)^{n} + (-1) i \displaystyle \sum_{n=0}^{\infty} (n+1) (i) (iz)^{n} =[/itex]
    [itex]= \frac{1}{4} (\displaystyle \sum_{n=0}^{\infty} (-iz)^{n} + \displaystyle \sum_{n=0}^{\infty} (iz)^{n} + i \displaystyle \sum_{n=0}^{\infty} (n+1) (-i) (-iz)^{n} + (-i) \displaystyle \sum_{n=0}^{\infty} (n+1) (i) (iz)^{n} ) =[/itex]
    [itex]= \frac{1}{4} (\displaystyle \sum_{n=0}^{\infty} (-iz)^{n} + (iz)^{n} + i(n+1) (-i) (-iz)^{n} + (-i) (n+1) (i) (iz)^{n} ) = [/itex]
    [itex]= \frac{1}{4} (\displaystyle \sum_{n=0}^{\infty} ((-iz)^{n} + (iz)^{n}) + (n+1)((-iz)^{n} + (iz)^{n}) )) =[/itex]
    [itex]= \frac{1}{4} (\displaystyle \sum_{n=0}^{\infty} (n+2)((-iz)^{n} + (iz)^{n}))[/itex]
    So we have [itex]a_{n}=0[/itex] [itex]n=2k+1[/itex] and if [itex]n=2k[/itex] [itex]a_{n} = (2n+4)/4 = 2k+1[/itex]
    This is the Taylor series around [itex]z_{0}=0[/itex]
    We want the Laurent series around [itex]z_{0} = \infty[/itex] so we do:
    [itex]\frac{1}{(z^{2}+1)^{2}} = \frac{1}{z^{4}} \frac{1}{(z^{-2}+1)^{2}}[/itex]
    We take [itex]w = \frac{1}{z}[/itex] and when [itex]w \to 0[/itex] we have [itex]\frac{1}{z} \to 0[/itex]
    As [itex]\frac{1}{z^{4}} \frac{1}{(z^{-2}+1)^{2}} = w^{4} \frac{1}{(w^{2}+1)^{2}}[/itex], the Laurent series of this function is the same we previously calculated with a +4 in the exponent.
    We revert the change of variable and we got the series.

    [itex]\frac{1}{4} \displaystyle \sum_{n=0}^{\infty} (n+2)((\frac{1}{iz})^{n+4} + (\frac{1}{-iz})^{n+4})[/itex]

    Finally, there are a lots of things I did I'm not really sure if were well done, I verified my work with calculator and later with wolframalpha, but I'm not sure what I this is right.
    Last edited: Oct 14, 2013
  2. jcsd
  3. Oct 14, 2013 #2
    That's well-done in my opinion. Suppose you could have outright made the substitution [itex]z\to 1/w[/itex] to obtain

    [tex]w^4\left(-\frac{1}{2w}\frac{d}{dw} \frac{1}{1+w^2}\right)[/tex]

    and just expand the [itex]\frac{1}{1+w^2}[/itex] about zero.
  4. Oct 14, 2013 #3
    Thanks, it's a waaay shorter.
    [itex]z = \frac{1}{w} \Rightarrow \frac{1}{(z^{2}+1)^{2}} = \frac{1}{(\frac{1}{w^{2}}+1)^{2}} = \frac{1}{\frac{1}{w^{4}} ( 1+w^{2})^{2}} = w^{4} \frac{1}{(w^{2}+1)^{2}} [/itex]
    [itex]\frac{d}{d w} (\frac{1}{w^{2}+1}) = \frac{-2w}{(w^{2}+1)^{2}} \Rightarrow \frac{1}{(w^{2}+1)^{2}} = -\frac{1}{2w} \frac{d}{d w} (\frac{1}{w^{2}+1})[/itex]
    [itex]w^{4} (-\frac{1}{2w} \frac{d}{d w} (\frac{1}{w^{2}+1})) = (-\frac{w^{3}}{2} \frac{d}{d w} (\frac{1}{w^{2}+1}))[/itex]
    [itex]\frac{1}{1+w^{2}} = \displaystyle \sum_{n=0}^{\infty} (-w^{2})^{n}[/itex]
    [itex]\frac{d}{d w} \frac{1}{1+w^{2}} = \displaystyle \sum_{n=0}^{\infty} (n+1) (-w^{2})^{n} (-2w) \Rightarrow (-\frac{w^{3}}{2} \frac{d}{d w} (\frac{1}{w^{2}+1})) = \displaystyle \sum_{n=0}^{\infty} (n+1) (-w^{2})^{n} (-2w) (-\frac{w^{3}}{2})=[/itex]
    [itex]= \displaystyle \sum_{n=0}^{\infty} (n+1) (-w^{2})^{n} (w^{4}) = \displaystyle \sum_{n=0}^{\infty} (n+1) (-1)^{n} w^{2n+4} = \displaystyle \sum _{n=0}^{\infty} (n+1) (-1)^{n} \frac{1}{z^{2n+4}}[/itex]

    Which is valid for all [itex]z \in \mathbb{C} / | z | > 1[/itex] (In the mess I forget to mention it my the previous post). We know it's valid here because it's where the geometric series equality is true.
    Last edited: Oct 14, 2013
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted